Автор работы: Пользователь скрыл имя, 25 Апреля 2013 в 12:13, контрольная работа
Решение любой задачи линейного программирования можно найти симплексным методом. Прежде чем применять указанный метод, следует записать исходную задачу в форме основной задачи линейного программирования, если она не имеет такой формы записи. Симплексный метод решения задачи линейного программирования основан на переходе от одного опорного плана к другому, при котором значение целевой функциивозрастает (при условии, что данная задача имеет оптимальный план и каждый ее опорный план является невырожденным). Указанный переход возможен, если известен какой-нибудь исходный опорный план. Рассмотрим задачу, для которой этот план можно непосредственно записать.
Улучшение опорного плана формулы пересчета симплекс таблиц 3
Нахождение оптимального плана симплексным методом 10
Список используемых источников 21
Министерство образования и науки рф
ФГБОУ ВПО Уральский государственный экономический университет
Реферат
по дисциплине «Метод оптимальных решений»
на тему : «Улучшение опорного плана. Формулы пересчета симплекс-таблиц»
Исполнитель: Д.В.Василёнок | |
Студент группы: 1НЭ1 | |
Научный руководитель: В.В.Лупарев выаыва |
2012
СОДЕРЖАНИЕ
Список используемых источников
1 УЛУЧШЕНИЕ ОПОРНОГО ПЛАНА.
ФОРМУЛЫ ПЕРЕСЧЕТА СИМПЛЕКС ТАБЛИЦ
Решение любой задачи линейного программирования можно найти симплексным методом. Прежде чем применять указанный метод, следует записать исходную задачу в форме основной задачи линейного программирования, если она не имеет такой формы записи. Симплексный метод решения задачи линейного программирования основан на переходе от одного опорного плана к другому, при котором значение целевой функциивозрастает (при условии, что данная задача имеет оптимальный план и каждый ее опорный план является невырожденным). Указанный переход возможен, если известен какой-нибудь исходный опорный план. Рассмотрим задачу, для которой этот план можно непосредственно записать.
Пусть требуется найти максимальное значение функции
при условиях
Здесь и – заданные постоянные числа
Векторная форма данной задачи имеет следующий вид: найти максимум функции
(1)
при условиях
где
Так как
то по определению опорного плана является опорным планом данной задачи (последние компонент вектора Х равны нулю). Этот план определяется системой единичных векторов которые образуют базис m-мерногопространства. Поэтому каждый из векторов а также вектор могут быть представлены в виде линейной комбинации векторов данного базиса. Пусть
Положим Так как векторы – единичные, то и а
Теорема 1
(признак
оптимальности опорного плана).
Теорема 2
Если для некоторого j=k и среди чисел нет положительных , то целевая функция (1) задачи (1) – (3) не ограничена на множестве ее планов.[1]
Теорема 3
Если опорный план Х задачи (1) – (3) невырожден и , но среди чисел есть положительные (не все ), то существует опорный план X' такой, что
Сформулированные теоремы
Значение Zj находится как скалярное произведение вектора на вектор
Значение равно скалярному произведению вектора P0 на вектор :
После заполнения таблицы 3 исходный опорный план проверяют на оптимальность. Для этого просматривают элементы -й строки таблицы. В результате может иметь место один из следующих трех случаев:
1) для j=m+1, (при ). Поэтому в данном случае числа для всех j от 1 до n;
2) для некоторого j, и все соответствующие этому индексу величины
3) для некоторых индексов j, и для каждого такого j , по крайней мере, одно из чисел положительно.
В первом случае на основании признака оптимальности исходный опорный план является оптимальным. Во втором случае целевая функция не ограничена сверху на множестве планов, а в третьем случае можно перейти от исходного плана к новому опорному плану, при котором значение целевой функции увеличится. Этот переход от одного опорного плана к другому осуществляется исключением из исходного базиса какого-нибудь из векторов и введением в него нового вектора. В качестве вектора, вводимого в базис, можно взять любой из векторов имеющий индекс j, для которого . Пусть, например, и решено ввести в базис вектор
Для определения вектора, подлежащего исключению из базиса, находят для всех Пусть этот минимум достигается при i=r. Тогда из базиса исключают вектор , а число называют разрешающим элементом.
Столбец и строку, на пересечении которых находится разрешающий элемент, называют направляющими.
После выделения направляющей строки и направляющего столбца находят новый опорный план и коэффициенты разложения векторов через векторы нового базиса, соответствующего новому опорному плану. Это легко реализовать, если воспользоваться методом Жордана–Гаусса. При этом можно показать, что положительные компоненты нового опорного плана вычисляются по формулам
а коэффициенты разложения векторов через векторы нового базиса, соответствующего новому опорному плану, – по формулам
После вычисления и согласно формулам (4) и (5) их значения заносят в табл. 4. Элементы -й строки этой таблицы могут быть вычислены либо по формулам
либо на основании их определения.
Таблица 1
Таблица 2
Наличие двух способов нахождения элементов -й строки позволяет осуществлять контроль правильности проводимых вычислений.
Из формулы (6) следует, что при переходе от одного опорного плана к другому наиболее целесообразно ввести в базис вектор , имеющий индекс j, при котором максимальным по абсолютной величине является число . Однако с целью упрощения вычислительного процесса в дальнейшем будем вектор, вводимый в базис, определять, исходя из максимальной абсолютной величины отрицательных чисел . Если же таких чисел несколько, то в базис будем вводить вектор, имеющий такой же индекс, как и максимальное из чисел , определяемых данными числами [1].
Итак, переход от одного опорного плана
к другому сводится к переходу
от одной симплекс-таблицы к
1) число,
стоящее в исходной симплекс-
2) число,
стоящее в исходной симплекс-
3) число,
стоящее в новой симплекс-
Эти три числа образуют своеобразный треугольник, две вершины которого соответствуют числам, находящимся в исходной симплекс-таблице, а третья – числу, находящемуся в новой симплекс-таблице. Для определения искомого элемента новой симплекс-таблицы из первого числа вычитают произведение второго и третьего. После заполнения новой симплекс-таблицы просматривают элементы -й строки. Если все , то новый опорный план является оптимальным. Если же среди указанных чисел имеются отрицательные, то, используя описанную выше последовательность действий, находят новый опорный план. Этот процесс продолжают до тех пор, пока либо не получают оптимальный план задачи, либо не устанавливают ее неразрешимость.
При нахождении решения задачи линейного программирования мы предполагали, что эта задача имеет опорные планы и каждый такой план является невырожденным. Если же задача имеет вырожденные опорные планы, то на одной из итераций одна или несколько переменных опорного плана могут оказаться равными нулю. Таким образом, при переходе от одного опорного плана к другому значение функции может остаться прежним. Более того, возможен случай, когда функция сохраняет свое значение в течение нескольких итераций, а также возможен возврат к первоначальному базису. В последнем случае обычно говорят, что произошло зацикливание. Однако при решении практических задач этот случай встречается очень редко, поэтому мы на нем останавливаться не будем.[1].
1.1 НАХОЖДЕНИЕ ОПТИМАЛЬНОГО ПЛАНА СИМПЛЕКСНЫМ МЕТОДОМ
Итак, нахождение оптимального плана симплексным методом включает следующие этапы:
1. Находят опорный план.
2. Составляют симплекс-таблицу.
3. Выясняют, имеется ли хотя бы одно отрицательное число . Если нет, то найденный опорный план оптимален. Если же среди чисел имеются отрицательные, то либо устанавливают неразрешимость задачи, либо переходят к новому опорному плану.
4. Находят
направляющие столбец и строку.
Направляющий столбец
5. По формулам (4) – (7) определяют положительные компоненты нового опорного плана, коэффициенты разложения векторов Pj по векторам нового базиса и числа , . Все эти числа записываются в новой симплекс-таблице.
6. Проверяют найденный опорный план на оптимальность. Если план не оптимален и необходимо перейти к новому опорному плану, то возвращаются к этапу 4, а в случае получения оптимального плана или установления неразрешимости процесс решения задачи заканчивают.[1].
Пример 1
Для изготовления различных изделий А, В и С предприятие использует три различных вида сырья. Нормы расхода сырья на производство одного изделия каждого вида, цена одного изделия А, В и С, а также общее количество сырья каждого вида, которое может быть использовано предприятием, приведены в табл. 1.
Таблица 1
Вид сырья |
Нормы затрат сырья (кг) на одно изделие |
Общее количество сырья (кг) | ||
А |
В |
С | ||
I II III |
18 6 5 |
15 4 3 |
12 8 3 |
360 192 180 |
Цена одного изделия (руб.) |
9 |
10 |
16 |
Информация о работе Улучшение опорного плана. Формулы пересчета симплекс-таблиц