Виды ионизирующего излучения

Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 15:17, реферат

Краткое описание

Радиация - обобщенное понятие. Оно включает различные виды излучений, часть которых встречается природе, другие получаются искусственным путем.
Излучение электромагнитное - процесс образования свободного электромагнитного поля; излучением называют также само свободное электромагнитное поле. Излучают ускоренно движущиеся заряженные частицы (например, тормозное излучение, синхротронное излучение, излучение переменных диполя, квадруполя и мультиполей высшего порядков). Атом и другие атомные системы излучают при квантовых переходах из возбужденных состояний в состояния с меньшей энергией.

Содержание

1. Ионизирующее излучение и его поле 3
2. Виды излучений 7
Корпускулярное излучение 7
Альфа-излучение 7
Протонное излучение 8
Нейтронное излучение 8
Электронное излучение 12
Бета-излучение 12
Космическое излучение 13
Электромагнитное излучение 14
Рентгеновское излучение 17
Гамма излучение 21

Прикрепленные файлы: 1 файл

виды ионизирующего излучения л.docx

— 64.91 Кб (Скачать документ)

ГБОУ ВПО РНИМУ им. Н.И.Пирогова

 

 

Кафедра онкологии и лучевой  терапии

 

 

 

 

Реферат на тему:

«Виды ионизирующего излучения»

 

              

 

 

 

                                                                   

 

                                                                          Студент 4 курса

                                                                          Педиатрического факультета

                                                                          группы 421

                                                                          Васильев С. И.

                                                                          Преподаватель:

                                                                          Бобров В. И.

 

 

 

2010

 

Оглавление

1. Ионизирующее излучение и его поле 3

2. Виды излучений 7

Корпускулярное излучение 7

  • Альфа-излучение 7
  • Протонное излучение 8
  • Нейтронное излучение 8
  • Электронное излучение 12
  • Бета-излучение 12

Космическое излучение 13

Электромагнитное излучение 14

  • Рентгеновское излучение 17
  • Гамма излучение 21

 

 

 

 

 

 

 

 

 

 

 

 

  1. Ионизирующее излучение и его поле

 

 Радиация - обобщенное  понятие. Оно включает различные  виды излучений, часть которых встречается природе, другие получаются искусственным путем.

 Излучение электромагнитное - процесс образования свободного электромагнитного поля; излучением называют также само свободное электромагнитное поле. Излучают ускоренно движущиеся заряженные частицы (например, тормозное излучение, синхротронное излучение, излучение переменных диполя, квадруполя и мультиполей высшего порядков). Атом и другие атомные системы излучают при квантовых переходах из возбужденных состояний в состояния с меньшей энергией.

Ионизирующее  излучение - излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков. (Видимый свет и ультрафиолетовое излучение не относят к ионизирующим излучениям). Непосредственно ионизирующее излучение - ионизирующее излучение, состоящее из заряженных частиц, имеющих кинетическую энергию, достаточную для ионизации при столкновении. (Непосредственно ионизирующее излучение может состоять из электронов, протонов, α - частиц и др.). Косвенно ионизирующее излучение - ионизирующее излучение, состоящее из незаряженных частиц, которые могут создавать непосредственно ионизирующее излучение и (или) вызывать ядерные превращения. (Косвенно ионизирующее излучение может состоять из нейтронов, фотонов и др.).

Фотонное излучение - электромагнитное косвенно ионизирующее излучение.

γ-Излучение - фотонное излучение, возникающее при ядерных превращениях или аннигиляции частиц.

Характеристическое  излучение - фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома.

Тормозное излучение - фотонное излучение с непрерывным энергетическим спектром, испускаемое при уменьшении кинетической энергии заряженных частиц.

Рентгеновское излучение - фотонное излучение, состоящее из тормозного и (или) характеристического излучения, генерируемое рентгеновскими аппаратами.

Корпускулярное  излучение - ионизирующее излучение, состоящее из частиц с массой, отличной от нуля (α -, β -частиц, нейтронов и др.).

α-Излучение - корпускулярное излучение, состоящее из α - частиц (ядер 4Не), испускаемых при радиоактивном распаде ядер или при ядерных реакциях, превращениях.

β-Излучение - корпускулярное излучение с непрерывным энергетическим спектром, состоящее из отрицательно или положительно заряженных электронов или позитронов (β- или β+ - частиц) и возникающее при радиоактивном β - распаде ядер или нестабильных частиц. Характеризуется граничной энергией спектра Еβ.

Аннигиляционное излучение - фотонное излучение, возникающее в результате аннигиляции частицы и античастицы (например, при взаимодействии β- электрона и β+позитрона). Моноэнергетическое ионизирующее излучение - ионизирующее излучение, состоящее из фотоноводинаковой энергии или частиц одного вида с одинаковой кинетической энергией.

Смешанное ионизирующее излучение - ионизирующее излучение, состоящее из частиц различного вида или из частиц и фотонов.

Направленное  ионизирующее излучение -ионизирующее излучение с выделенным направлением распространения.

Естественный  фон излучения - ионизирующее излучение, создаваемое космическим излучением и излучением естественно распределенных природных радиоактивных веществ (на поверхности Земли, в приземной атмосфере, в продуктах питания, воде, в организме человека и др.).

Фон - ионизирующее излучение, состоящее из естественного фона и ионизирующих излучений посторонних источников.

Космическое излучение - ионизирующее излучение, которое состоит из первичного излучения, поступающего из космического пространства, и вторичного излучения, возникающего в результате взаимодействия первичного излучения с атмосферой.

Узкий пучок излучения - такая геометрия излучения, при которой детектор регистрирует только нерассеянное излучение источника.

Широкий пучок  излучения - такая геометрия излучения, при которой детектор регистрирует нерассеянное и рассеянное излучения источника.

Поле ионизирующего  излучения - пространственно-временное распределение ионизирующего излучения в рассматриваемой среде.

Поток ионизирующих частиц (фотонов) - отношение числа ионизирующих частиц (фотонов) dN, проходящих через данную поверхность за интервал времени dt, к этому интервалу: F= dN/dt.

Поток энергии  частиц - отношение энергии падающих частиц к интервалу времени Ψ=dЕ/dt. Плотность потока ионизирующих частиц (фотонов) - отношение потока ионизирующих частиц (фотонов) dF проникающих в объем элементарной сферы, к площади центрального поперечного сечения dS этой сферы: φ = dF/dS = d2N/dtdS. (Плотность потока энергии частиц определяется аналогично).

Флюенс (перенос) ионизирующих частиц (фотонов) - отношение числа ионизирующих частиц (фотонов) dN, проникающих в объем элементарной сферы, к площади центрального поперечного сечения dS этой сферы: Ф = dN/dS.

Энергетический  спектр ионизирующих частиц - распределение ионизирующих частиц по их энергии.

Эффективная энергия  фотонного излучения - энергия фотонов такого моноэнергетического фотонного излучения, относительное ослабление которого в поглотителе определенного состава и определенной толщины то же самое, что и рассматриваемого немоноэнергетического фотонного излучения.

Граничная энергия  спектра β - излучения - наибольшая энергия β -частиц в непрерывном энергетическом спектре β -излучения данного радионуклида.

Альбедо излучения - отношение числа частиц (фотонов), отражающихся от границы раздела двух сред, к числу частиц (фотонов), падающих на поверхность раздела.

Запаздывающее излучение - частицы, излучаемые продуктами распада, в отличии от частиц (нейтронов и гамма - лучей), возникающих непосредственно в момент деления.

Ионизация в газах- отрыв от атома или молекулы газа одного или нескольких электронов. В результате ионизации в газе возникают свободные носители заряда (электроны и ионы) и он приобретает способность проводить электрический ток.

Термин «излучение» охватывает диапазон электромагнитных волн, включая  видимый спектр, инфракрасную и ультрафиолетовую области, а также радиоволны, электрический ток и ионизирующее излучение. Вся несхожесть этих явлений обусловлена лишь частотой (длиной волны) излучения. Ионизирующее излучение может представлять опасность для здоровья человека. Ионизирующее излучение (радиация) - вид излучения, который изменяет физическое состояние атомов или атомных ядер, превращая их в электрически заряженные ионы или продукты ядерных реакций. При определенных обстоятельствах присутствие таких ионов или продуктов ядерных реакций в тканях организма может изменять течение процессов в клетках и молекулах, а при накоплении этих событий может нарушить ход биологических реакций в организме, т.е. представлять опасность для здоровья человек.

  1. Виды излучений

 

Различают:

    • корпускулярное излучение (состоящее из частиц с массой отличной от нуля);
    • электромагнитное (фотонное) излучение.

 Корпускулярное излучение

 

К корпускулярному ионизирующему излучению относят альфа-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят. Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.

Альфа-излучение

 

Альфа частицы (α - частицы) - ядра атома гелия, испускаемые при α - распаде некоторыми радиоактивными атомами. α - частица состоит из двух протонов и двух нейтронов. Альфа излучение - поток ядер атомов гелия (положительно заряженных и относительно тяжелых частиц). Естественное альфа-излучение как результат радиоактивного распада ядра, характерно для неустойчивых ядер тяжелых элементов, начиная с атомного номера более 83, т.е. для естественных радионуклидов рядов урана, и тория, а также, для полученных искусственным путем трансурановых элементов.

Возможность α- распада связана с тем, что масса (а, значит, и суммарная энергия ионов) α- радиоактивного ядра больше суммы масс α- частицы и образующегося после α- распада дочернего ядра. Избыток энергии исходного (материнского) ядра освобождается в форме кинетической энергии α- частицы и отдачи дочернего ядра. α- частицы представляют собой положительно заряженные ядра гелия - 2Не4 и вылетают из ядра со скоростью 15-20 тыс. км/сек. На своём пути они производят сильную ионизацию среды, вырывая электроны из орбит атомов. Пробег α- частиц в воздухе порядка 5-8 см, в воде - 30-50 микрон, в металлах - 10-20 микрон. При ионизации α- лучами наблюдаются химические изменения вещества, и нарушается кристаллическая структура твердых тел. Так как между α- частицей и ядром существует электростатическое отталкивание, вероятность ядерных реакций под действием α- частиц природных радионуклидов (максимальная энергия 8,78 МэВ у 214Ро) очень мала, и наблюдается лишь на легких ядрах (Li, Ве, В, С, N, Na, Al) с образованием радиоактивных изотопов и свободных нейтронов.

 Протонное излучение

 

Протонное излучение – излучение, образующееся в процессе самопроизвольного распада нейтронно-дефицитных атомных ядер или как выходной пучок ионного ускорителя (например, синхрофазоторона).

 Нейтронное излучение

 

Нейтронное излучение - поток нейтронов, которые преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма-квантов (гамма-излучения).

При упругих взаимодействиях возможна обычная ионизация вещества. Источниками нейтронного излучения являются:

    • спонтанно делящиеся радионуклиды;
    • специально изготовленные радионуклидные источники нейтронов;
    • ускорители электронов, протонов, ионов;
    • ядерные реакторы; космическое излучение.

 С точки зрения биологического Нейтроны образуются в ядерных реакциях (в ядерных реакторах и в других промышленных и лабораторных установках, а также при ядерных взрывах). Нейтроны не обладают электрическим зарядом. Условно нейтроны в зависимости от кинетическойэнергии разделяются на:

    • быстрые (до 10 МэВ);
    • сверхбыстрые;
    • промежуточные;
    • медленные;
    • тепловые.

Нейтронное излучение  обладает большой проникающей способностью. Медленные и тепловые нейтроны вступают в ядерные реакции, в результате могут образовываться стабильные или радиоактивные изотопы. Свободный нейтрон - это нестабильная, электрически нейтральная частица.

Исследуются уникальные свойства нейтрона, что является актуальным и дает возможность наиболее надежно и точно определить фундаментальные параметры электрослабого взаимодействия и, тем самым либо подтвердить, либо опровергнуть Стандартную модель. Наличие магнитного момента у нейтрона уже свидетельствует о его сложной структуре, т.е. его "неэлементарности". Во втором случае взаимодействие неполяризованных и поляризованных нейтронов разных энергий с ядрами позволяет их использовать в физике ядра и элементарных частиц. Изучение эффектов нарушения пространственной четности и инвариантности относительно обращения времени в различных процессах - от нейтронной оптики до деления ядер нейтронами - это далеко не полный перечень наиболее актуальных сейчас направлений исследований. Тот факт, что реакторные нейтроны тепловых энергий имеют длины волн, сравнимые с межатомными расстояниями в веществе, делает их незаменимым инструментом для исследования конденсированных сред. Взаимодействие нейтронов с атомами является сравнительно слабым, что позволяет нейтронам достаточно глубоко проникать в вещество - в этом их существенное преимущество по сравнению с рентгеновскими и γ-лучами, а также пучками заряженных частиц из-за наличия массы нейтроны при том же импульсе (следовательно, при той же длине волны) обладают значительно меньшей энергией, чем рентгеновские и γ-лучи, и эта энергия оказывается сравнимой с энергией тепловых колебаний атомов и молекул в веществе, что дает возможность изучать не только усредненную статическую атомную структуру вещества, но и динамические процессы, в нем происходящие. Наличие магнитного момента у нейтронов позволяет использовать их для изучения магнитной структуры и магнитных возбуждений вещества, что очень важно для понимания свойств и природы магнетизма материалов. Рассеяние нейтронов атомами обусловлено, в основном, ядерными силами, следовательно сечения их когерентного рассеяния никак не связаны с атомным номером (в отличие от рентгеновских и γ-лучей). Поэтому облучение материалов нейтронами позволяет различать положения атомов легких (водород, кислород и др.) элементов, идентификация которых почти невозможна с использованием рентгеновских и γ-лучей. По этой причине нейтроны успешно применяются при изучении биологических объектов, в материаловедении, в медицине и др. областях. Кроме того, различие в сечениях рассеяния нейтронов у разных изотопов позволяет не только отличать в материале элементы с близкими атомными номерами, но и исследовать их изотопный состав. Наличие изотопов с отрицательной амплитудой когерентного рассеяния дает уникальную возможность контрастирования исследуемых сред, что также очень часто используют в биологии и медицине.

Информация о работе Виды ионизирующего излучения