Патология клетки

Автор работы: Пользователь скрыл имя, 14 Июля 2014 в 01:30, реферат

Краткое описание

Клетка - элементарная живая система, обладающая способностью к обмену с окружающей средой. Строение клеток организма человека обеспечивает выполнение ими специализированной функции и «сохранение себя», т. е. поддержание клеточного пула. Органоиды клетки, обладая определенными морфологическими особенностями, обеспечивают основные проявления жизнедеятельности клетки. С ними связаны дыхание и энергетические запасы (митохондрии), синтез белков (рибосомы, гранулярная цитоплазматическая сеть), накопление и транспорт липидов и гликогена, детоксикационная функция (гладкая цитоплазматическая сеть), синтез продуктов и их секреция (пластинчатый комплекс), внутриклеточное пищеварение и защитная функция (лизосомы). Деятельность ультраструктур клетки строго координирована, причем координация в выработке специфического продукта клеткой подчинена закону «внутриклеточного конвейера». По принципу ауторегуляции он осуществляет взаимосвязь между структурными компонентами клетки и протекающими в ней процессами обмена.

Содержание

I.Введение
II.Патология клеточного ядра
1.Структура и размер ядер
2.Форма ядер и их количество
3.Структура и размер ядрышек
4.Ядерные включения
5.Ядерная оболочка
6.Патология митоза
7.Хромосомные аберрации и хромосомные болезни
III. Патология цитоплазмы
1.Изменения мембран и патология клетки
2.Эндоплазматическая сеть
3.Пластинчатый комплекс, секреторные гранулы и вакуоли
4.Митохондрии
5.Лизосомы
6.Микротельца (пероксисомы)
7.Цитоскелет
8.Плазматическая мембрана
IV. Литература

Прикрепленные файлы: 1 файл

реф.патан1.docx

— 58.97 Кб (Скачать документ)

В пользу функции ядерной оболочки как физического барьера и модулятора нуклеоцитоплазматического обмена говорит установленная корреляция между изменениями структуры ядерной оболочки, модулем ее пор и выходом РНК в цитоплазму. Контроль ядерной оболочкой транспорта РНК в цитоплазму может оказывать существенное влияние на гомеостаз клетки при патологических состояниях. Участие ядерной оболочки

в синтезе мембран не имеет достоверных доказательств, хотя и считают, что эта роль возможна, так как мембраны ядерной оболочки непосредственно переходят в эндоплазматическую сеть цитоплазмы. О возможном влиянии ферментов ядерной оболочки на функцию ядра свидетельствует наличие в ядерной оболочке различных ферментов детоксикации, а. также веществ, обеспечивающих «гормональное управление» (аденилатциклаза, рецепторы инсулина и др.).

Патология митоза.

В жизненном цикле клетки митоз занимает особое место. С его помощью осуществляется репродукция клеток, а значит, и передача их наследственных свойств. Подготовка клеток к митозу складывается из ряда последовательных процессов: репродукции ДНК, удвоения массы клетки, синтеза белковых компонентов хромосом и митотического аппарата, удвоения клеточного центра, накопления энергии для цитотомии. В процессе митотического деления, как известно, различают 4 основные фазы: профазу, метафазу, анафазу и телофазу.

При патологии митоза может страдать любая из этих фаз. Руководствуясь этим, создана классификация патологии митоза [Алов И. А., 1972], согласно которой выделяются следующие типы патологии митоза:

  1. Повреждение хромосом:
    1. задержка клеток в профазе;
    2. нарушение спирализации и деспирализации хромосом;
    3. фрагментация хромосом;
    4. образование мостов между хромосомами в анафазе;
    5. раннее разъединение сестринских хроматид;
    6. повреждение кинетохора.
  2. Повреждение митотического аппарата:
    1. задержка развития митоза в метафазе;
    2. рассредоточение хромосом в метафазе;
    3. трехгрупповая метафаза;
    4. полая метафаза;
    5. многополюсные митозы;
    6. асимметричные митозы;
    7. моноцентрические митозы;
    8. К-митозы.
  3. Нарушение цитотомии:
    1. преждевременная цитотомия;
    2. задержка цитотомии;
    3. отсутствие цитотомии.

Патологию митоза могут вызвать различные воздействия на клетку: ультрафиолетовое и ионизирующее излучение, высокая температура, химические вещества, в том числе канцерогены и митотические яды и др. Велико количество патологических митозов при малигнизации тканей.

 

 

 

 

Хромосомные  аберации  и хромосомнфе болезни.

Хромосомные аберрации. Под хромосомными аберрациями понимают изменения структуры хромосом, вызванные их разрывами, с последующим перераспределением, утратой или удвоением генетического материала. Они отражают различные виды аномалий хромосом. У человека среди наиболее часто встречающихся хромосомных аберраций, проявляющихся развитием глубокой патологии, выделяют аномалии, касающиеся числа и структуры хромосом. Нарушения числа хромосом могут быть выражены отсутствием одной из пары гомологичных хромосом (моносомия) или появлением добавочной, третьей, хромосомы (трисомия). Общее количество хромосом в кариотипе в этих случаях отличается от модального числа и равняется 45 или 47.Полиплоидия и анеуплоидия имеют меньшее значение для развития хромосомных синдромов. К нарушениям структуры хромосом при общем нормальном их числе в кариотипе относят различные типы их «поломки»: транслокацию (обмен сегментами между двумя негомологичными хромосомами), делецию (выпадение части хромосомы), фрагментацию, кольцевые хромосомы и т. д.

Хромосомные аберрации, нарушая баланс наследственных факторов, являются причиной многообразных отклонений в строении и жизнедеятельности организма, проявляющихся в так называемых хромосомных болезнях.

Хромосомные болезни. Их делят на связанные с аномалиями соматических хромосом (аутосом) и с аномалиями половых хромосом (телец Барра). При этом учитывают характер хромосомной аномалии - нарушение числа отдельных хромосом, числа хромосомного набора или структуры хромосом. Эти критерии позволяют выделять полные или мозаичные клинические формы хромосомных болезней.

Хромосомные болезни, обусловленные нарушениями числа отдельных хромосом (трисомиями и моносомиями), могут касаться как аутосом, так и половых хромосом.

Моносомии аутосом (любые хромосомы, кроме Х- и Y-хромосом) несовместимы с жизнью. Трисомии аутосом достаточно распространены в патологии человека. Наиболее часто они представлены синдромами Патау (13-я пара хромосом) и Эдвардса (18-я пара), а также болезнью Дауна (21-я пара). Хромосомные синдромы при трисомиях других пар аутосом встречаются значительно реже. Моносомия половой Х-хромосомы (генотип ХО) лежит в основе синдрома Шерешевского-Тернера, трисомия половых хромосом (генотип XXY) - в основе синдрома Клейнфелтера. Нарушения числа хромосом в виде тетра- или триплоидии могут быть представлены как полными, так и мозаичными формами хромосомных болезней.

Нарушения структуры хромосом дают самую большую группу хромосомных синдромов (более 700 типов), которые, однако, могут быть связаны не только с хромосомными аномалиями, но и с другими этиологическими факторами.

Для всех форм хромосомных болезней характерна множественность проявлений в виде врожденных пороков развития, причем их формирование начинается на стадии гистогенеза и продолжается в органогенезе, что объясняет сходство клинических проявлений при различных формах хромосомных болезней.

Патология цитоплазмы.

Изменения мембран и патология клетки

Клеточные мембраны, как известно, состоят из бислоя фосфолипидов, по обе стороны которого располагаются разнообразные мембранные белки. На внешней поверхности мембраны белковые молекулы несут полисахаридные компоненты (гликокаликс), которые содержат многочисленные поверхностные клеточные антигены. Они играют важную роль в формировании клеточных стыков.

Изменения клеточных мембран. Среди них различают следующие: чрезмерное везикулообразование («минус-мембрана»); увеличение поверхности плазмолеммы клеток мембранами микропиноцитозных пузырьков («плюс-мембрана»); усиленный микроклазматоз и клазматоз («минус-мембрана»); образование цитоплазматических отростков из плазмолеммы клетки; образование пузырей на поверхности клетки; утолщение слоев мембраны; образование микропор; образование миелиноподобных структур из плазмолеммы и мембран органелл; слияние разнородных клеточных мембран; локальные разрушения мембран - «бреши» в плазмолемме; «штопка» локально разрушенной плазмолеммы мембранами микропиноцитозных везикул.

К патологии мембран клетки могут вести нарушения мембранного транспорта, изменения проницаемости мембран, изменения коммуникации клеток и их «узнавания», изменения подвижности мембран и формы клеток, нарушения синтеза и обмена мембран.

Нарушения мембранного транспорта. Процесс мембранного транспорта предполагает перенос ионов и других субстратов против градиента концентрации. Транспорт может быть активным, тогда он требует АТФ и «подвижности» транспортных белков в мембране, или пассивным посредством различных диффузионных и обменных процессов. Активный транспорт - это также функция эпителиальных барьеров. Нарушения мембранного транспорта, ведущие к патологии клетки, хорошо прослежены при ишемии, которая приводит к первичным изменениям митохондрий. В митохондриях резко падает эффективность окислительного фосфорилирования, они набухают, вначале увеличивается проницаемость их внутренней мембраны, в дальнейшем повреждение становится тотальным и необратимым.

Ишемическое повреждение митохондрий приводит к полому натрий-калиевого АТФ-насоса, постепенному накапливанию в клетке натрия и потере ею калия. Нарушение натрий-калиевого обмена ведет к вытеснению кальция из митохондрий. В результате в цитоплазме повышается уровень ионизированного кальция и увеличивается связывание его с кальмодулином. С повышением содержания кальций-кальмодулиновых комплексов связан ряд изменений клетки: расхождение клеточных стыков, поглощение кальция митохондриями, изменение микротрубочек и микрофиламентов, активация фосфолипаз. Эндоплазматическая сеть накапливает воду и ионы, следствием чего является расширение ее канальцев и цистерн, развитие гидропической дистрофии. Усиление гликолиза сопровождается истощением гликогена, накоплением лактата и снижением клеточного рН. С этими изменениями связано нарушение структуры хроматина и уменьшение синтеза РНК. Необратимые ишемические повреждения клетки связаны с гидролизом мембран, особенно мембранных липидов, под действием фосфолипаз. Возникают и нарушения лизосомальных мембран с высвобождением гидролаз.

Изменения проницаемости мембран. Контроль мембранной проницаемости предполагает поддержание структуры как фосфолипидного бислоя мембраны с необходимым обменом и ресинтезом, так и соответствующих белковых каналов. Важная роль в осуществлении этого контроля принадлежит гликокаликсу и взаимодействию мембранных белков с цитоскелетом, а также гормонам, взаимодействующим с мембранными рецепторами. Изменения проницаемости могут быть тяжелыми (необратимыми) или поверхностными. Наиболее изученной моделью изменения мембранной проницаемости является повреждение тяжелыми металлами (ртуть, уран). Тяжелые металлы, взаимодействуя с сульфгидрильными группами мембранных белков, изменяют их конформацию и резко увеличивают проницаемость мембраны для натрия, калия, хлора, кальция и магния, что приводит к быстрому набуханию клеток, распаду их цитоскелета. Подобные изменения мембран отмечаются при повреждении их комплементом («болезни гиперчувствительности»). В мембранах образуются бреши, что снижает их сопротивление и резко увеличивает проницаемость.

Изменения коммуникации клеток и их «узнавания». Коммуникабельность клеток и опознавание «своих» и «чужих» - необходимое свойство клеточного кооперирования. Клеточное «общение» и «узнавание» подразумевают, прежде всего, различия во внешних поверхностях плазматической мембраны и мембран внутриклеточных органелл. Особый интерес в этом отношении представляет гликокаликс мембраны с поверхностными антигенами - маркерами определенного типа клеток.

Изменения клеточного «общения» и «узнавания» встречаются при тех патологических процессах (воспаление, регенерация, опухолевый рост), при которых поверхностные антигены могут изменяться, причем различия могут касаться как типа антигена, так и его «доступности» со стороны внеклеточного пространства. Показано, что при исчезновении характерных для данного типа клеток антигенов могут появляться «эмбриональные» и аномальные (например, карциноэмбриональный) антигены; изменения гликолипидов мембраны делают ее более доступной воздействию антител.

Коммуникабельность клеток определяется также состоянием клеточных стыков, которые могут повреждаться при различных патологических процессах и болезнях. В раковых клетках, например, найдена корреляция между изменениями клеточных стыков и нарушением межклеточных связей; в опухолях обнаружены аномальные клеточные соединения.

Изменения подвижности мембран и формы клеток. Различают два типа изменений, связанных с нарушением подвижности мембран: выпячивание мембраны наружу - экзотропия и внутрь цитоплазмы - эзотропия. При экзотропии мембрана, выпячивающаяся во внеклеточное пространство, образует окруженную мембраной цитоплазматическую структуру. При эзотропии появляется окруженная мембраной полость. Изменения формы клеток связаны не только с экзо- и эзотропией, но и с упрощением клеточной поверхности (потеря малых отростков подоцитов при нефротическом синдроме).

Нарушения синтеза и обмена мембран. Возможно усиление синтеза мембран (при воздействии ряда химических веществ на клетку) или его ослабление (снижение синтеза мембран щеточной каемки энтероцитов при угнетении мембранных ферментов). В равной мере возможно усиление обмена мембран (при стимуляции аутофагоцитоза) или его ослабление (при лизосомных болезнях).

Эндоплазматическая сеть

Однозначные изменения гранулярной и агранулярной эндоплазматической сети могут отражать нарушения различных функций цитоплазмы и клетки.

Изменения гранулярной эндоплазматической сети и рибосом

Функции гранулярной эндоплазматической сети и рибосом сопряжены достаточно жестко, поэтому морфологические проявления их нарушений касаются, как правило, обеих органелл.

Изменения гранулярной эндоплазматической сети и рибосом могут быть представлены гиперплазией и атрофией, упрощением структуры, дезагрегацией (диссоциацией) рибосом и полисом, образованием аномальных рибосомально-пластинчатых комплексов.

Гиперплазия гранулярной эндоплазматической сети и рибосом, т. е. увеличение их количества, светооптически проявляется повышенной базофилией цитоплазмы, которая отражает объемную плотность рибосом и является показателем интенсивности белкового синтеза в клетке. Электронно-микроскопически в таких случаях можно судить о сопряжении синтеза и экскреции белка или отсутствии такого сопряжения. В интенсивно секретирующих и экскретирующих белок клетках (например, в активных фибробластах) цистерны гранулярной эндоплазматической сети расширены и содержат мало электронно-плотного материала: отмечается гиперплазия как связанных с мембранами, так и свободных рибосом, образующих полисомы; пластинчатый комплекс (комплекс Гольджи), участвующий в экскреции синтезируемого белка, хорошо развит. В интенсивно секретирующих белок клетках с нарушенной его экскрецией в гиперплазированных расширенных цистернах эндоплазматической сети с обилием рибосом и полисом накапливается хлопьевидный электронно-плотный материал, иногда происходит его кристаллизация; комплекс Гольджи в таких случаях развит плохо.

Информация о работе Патология клетки