Автор работы: Пользователь скрыл имя, 17 Сентября 2014 в 21:25, лекция
Под наследственной информацией мы понимаем информацию о строении белков и характере синтеза белков в организме человека. Синоним – генетическая информация.
В хранении и реализации наследственной информации ведущую роль играют нуклеиновые кислоты. Нуклеиновые кислоты – это полимеры, мономерами которых являются нуклеотиды. Впервые нуклеиновые кислоты были открыты Ф. Мишером в 1869 г в ядрах лейкоцитов из гноя. Название происходит от латинского nucleus –ядро. Различают два вида нуклеиновых кислот: ДНК и РНК
Тезисы лекции
Тема лекции: МОЛЕКУЛЯРНЫЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ. РЕАЛИЗАЦИЯ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ.
Что такое наследственная информация?
Под наследственной информацией мы понимаем информацию о строении белков и характере синтеза белков в организме человека. Синоним – генетическая информация.
В хранении и реализации наследственной информации ведущую роль играют нуклеиновые кислоты. Нуклеиновые кислоты – это полимеры, мономерами которых являются нуклеотиды. Впервые нуклеиновые кислоты были открыты Ф. Мишером в 1869 г в ядрах лейкоцитов из гноя. Название происходит от латинского nucleus –ядро. Различают два вида нуклеиновых кислот: ДНК и РНК
Функции нуклеиновых кислот
ДНК хранит генетическую информацию. В ДНК находятся гены. РНК принимают участие в биосинтезе белка (т.е. в реализации наследственной информации)
Открытие роли ДНК в хранении наследственной информации. В 1944 г. Oswald Avery, Macklin McCarty, and Colin MacLeod представили доказательства того, что гены находятся в ДНК. Они работали с пневмококками, у которых есть два штамма: патогенный (S-штамм) и непатогенный (R- штамм). Заражение S-штаммом мышей приводит к их гибели
Если вводят R- штамм, то мыши выживают. Из убитых бактерий S-штамма выделили ДНК, белки и полисахариды и добавляли к R- штамму. Добавление ДНК вызывает трансформацию непатогенного штамма в патогенный.
История открытия строения ДНК.
Строение ДНК открыли в 1953 г Дж.Уотсон и Ф.Крик. В своей работе они использовали данные, которые получили биохимик Е.Чаргафф и биофизики Р.Франклин, М.Уилкинс.
Работа Е.Чаргаффа: В 1950 г. биохимик Ервин Чаргафф установил, что в молекуле ДНК:
1) А=Т и Г=Ц
2) Сумма пуриновых оснований (А и Г) равна сумме пиримидиновых оснований (Т и Ц): А+Г=Т+Ц
Или А+Г/Т+Ц=1
Работа Р.Франклин и М.Улкинс: В начале 50-х г.г. биофизики Р.Франклин и М.Уилкинс получили рентгенограммы ДНК, которые показали, что ДНК имеет форму двойной спирали. В 1962 г. Ф.Крик, Дж.Уотсон и Морис Уилкинс получили Нобелевскую премию по физиологии и медицине за расшифровку строения ДНК
Строение ДНК
ДНК – это полимер, который состоит из мономеров – нуклеотидов. Строение нуклеотида ДНК: нуклеотид ДНК состоит из остатков трех соединений:
1) Моносахарида дезоксирибозы
2) Фосфата - остатка фосфорной кислоты
3) Одного из четырех азотистых оснований – аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц).
Азотистые основания: А и Г – производные пурина (два кольца), Т и Ц- производные пиримидина (одно кольцо).
А комплементарен Т
Г комплементарен Ц
Между А и Т образуется 2 водородные связи, между Г и Ц - 3
В нуклеотиде атомы карбона
в дезоксирибозе пронумерованы от 1’ до
5’.
К 1’-карбону присоединяется азотистое
основание, а к 5’-карбону – фосфат. Нуклеотиды
соединяются между собой фосфодиэфирными
связями. В результате образуется полинуклеотидная
цепьСкелет цепи состоит из чередующихся
молекул фосфата и сахара дезоксирибозы.
Азотистые основания расположены сбоку молекулы. Один из концов цепи обозначают 5’, а другой - 3’ (по обозначению соответствующих атомов карбона). На 5’ – конце находится свободный фосфат, это начало молекулы. На 3’- конеце находится ОН-группа. Это хвост молекулы. Новые нуклеотиды могут присоединяться к 3’- концу.
Строение ДНК:
К ним присоединяются разные регуляторные белки.
Размеры ДНК: толщина молекулы ДНК составляет 2 нм, расстояние между двумя витками спирали – 3,4 нм, в одном полном витке - 10 пар нуклеотидов. Средняя длина одной пары нуклеотидов 0,34 нм. Длина молекулы варьирует. В бактерии кишечная палочка кольцевидная ДНК имеет длину 1,2 мм. У человека суммарная длина 46 ДНК, выделенных из 46 хромосом составляет около 190 см. Следовательно, средняя длина 1 молекулы ДНК человека более 4 см.
Линейное изображение ДНК. Если цепи ДНК изображают в виде линии, то принято вверху изображать цепь в направлении от 5‘ к 3‘.
5‘ АТТГТЦЦГАГТА 3‘
3‘ ТААЦАГГЦТЦАТ 5'
Локализация ДНК в клетках эукариот:
Функция ДНК: хранит наследственную (генетическую) информацию. В ДНК находятся гены. У человека в клетке менее 30 000 генов.
Свойства ДНК
Редупликация – это синтез ДНК.
Процесс идет перед делением клетки в синтетическом периоде интерфазы.
Суть процесса: Фермент геликаза разрывает водородные связи между двумя цепями ДНК и раскручивает ДНК. На каждой материнской цепи по принципу комплементарности синтезируется дочерняя цепь. Процесс катализирует фермент ДНК-полимераза.
В результате редупликации образуется две дочерние ДНК, которые имеют такое же строение как и материнская молекула ДНК.
Рассмотрим процесс редупликации более подробно
1) Редупликация –
2) ДНК синтезируется из
3) Синтез ДНК начинается в определенных точках – точках инициации репликации. В этих участках много А-Т пар. Специальные белки присоединяются к точке инициации.
Фермент геликаза начинает раскручивать материнскую ДНК. Нити ДНК расходятся.
Редупликацию катализирует фермент ДНК-полимераза.
От точки инициации фермент ДНК-полимераза
движется в двух противоположных направлениях.
Между расходящимися цепями образуется
угол- репликационная вилка.
3) Цепи материнской ДНК антипараллельны. Дочерние цепи синтезируются антипараллельно материнским, поэтому синтез дочерних цепей в области репликационной вилки идет в двух противоположных направлениях. Синтез одной цепи идет в направлении движения фермента. Эта цепь синтезируется быстро и непрерывно (лидирующая). Вторая синтезируется в противоположном направлении маленькими фрагментами – фрагментами Оказаки (отстающая цепь).
4) Фермент ДНК-полимераза не может сам начать синтез дочерней цепи ДНК.
Синтез лидирующей цепи и любого фрагмента Оказаки начинается с синтеза праймера. Праймер - кусочек РНК длиной 10-15 нуклеотидов. Праймер синтезирует фермент праймаза из нуклеотидов РНК. К праймеру ДНК-полимераза присоединяет нуклеотиды ДНК.
В последующем праймеры вырезаются, брешь застраивается нуклеотидами ДНК.
Фрагменты сшиваются ферментами - лигазами
5) Ферменты, участвующие в редупликации: геликаза, топоизомераза, дестабилизирующие белки, ДНК-полимераза, лигаза.
6) Молекула ДНК длинная. В ней
образуется большое число
ДНК синтезируется фрагментами – репликонами.
Репликон – участок между двумя точками
инициации репликации. В соматической
клетке человека в 46 хромосомах более
50000 репликонов. Синтез ДНК 1 соматической
клетки человека длится более 10 часов.
Самокоррекция ДНК (ДНК-редактирование)
В процессе редупликации ДНК полимераза иногда делает ошибки (неправильно включает нуклеотиды). Она проверяет свою работу. Если обнаруживает ошибку, то вырезает последние нуклеотиды и включает в ДНК новые.
Это процесс называется самокоррекция ДНК. Она уменьшает частоту ошибок при редупликации (неправильно включенные нуклеотиды) в 10 раз – с 1/100000 нуклеотидов до 10/1000000
Значение редупликации: в результате редупликации образуется две дочерние ДНК, которые как две капли воды похожи на материнскую молекулу ДНК. При делении клеток дочерние ДНК расходятся в дочерние клетки. Таким образом, редупликация обеспечивает передачу наследственной информации в дочерние клетки.
Строение РНК
РНК – это полимер, состоящий из мономеров – нуклеотидов. Главные отличия РНК от ДНК:
Виды РНК и функции
иРНК |
Переносит информацию о строении белка из ядра в цитоплазму |
рРНК |
Структурная функция. Входит в состав рибосом. Синтезируется в ядрышках. |
тРНК |
Транспортирует аминокислоты в рибосомы для синтеза белка. Играет важную роль в переводе последовательности нуклеотидов в иРНК в последовательность аминокислот в белке |
Малые ядерные РНК |
Принимают участие в процессинге (созревание иРНК) |
Малые ядрышко-вые РНК |
Принимают участие в созревании рРНК |
Все перечисленные РНК закодированы в ДНК и синтезируются в ядре клетки. Общая функция всех РНК – обеспечивают синтез белка.
Что такое ген?
Термин «ген» предложил В. Йогансен в 1909 г. Ген ( в узком смысле слова) – это участок ДНК, в котором закодирована информация о строении одного белка.
Однако, в ДНК закодированы не только белки, но и строение всех видов РНК. В ДНК также находятся регуляторные участки, которые регулируют процессы транскрипции: ускоряют или замедляют транскрипцию, блокируют транскрипцию или, наоборот, активируют.
Ген в более широком смысле слова – это участок ДНК, который кодирует первичную структуру белка, рРНК, тРНК, или регулирует транскрипцию другого гена.
Классификация генов. В зависимости от выполняемых функций выделяют две группы генов:
1. Структурные гены – это гены, которые кодируют белок или РНК (рРНК, тРНК или др. вид РНК).
2. Регуляторные гены – гены, которые регулируют процессы биосинтеза белка (у эукариот – это промоторы –место присоединения РНК-полимеразы, энхансеры – ускоряют транскрипцию, сайленсеры - тормозят)
Что такое ген?
Строение гена эукариот, кодирующего белок:
Типичный ген человека состоит примерно из 28 000 оснований и имеет 8 экзонов. Он кодирует полипептид, состоящий в среднем из 447 аминокислот.
Самый длинный ген, найденный в геноме человека, это ген мышечного белка дистрофина, содержащий 2,4 · 106 п.н.
Что такое генетический код?
Генетический код – система записи генетической информации о строении белков в ДНК в виде определенной последовательности нуклеотидов
Основные свойства генетического кода:
Экспрессия гена
Под экспрессией гена понимают реализацию записанной в нем наследственной информации. Синтез белка – это процесс, который обеспечивает реализацию наследственной информации в клетке. Согласно центральной догме молекулярной биологии он идет в следующем направлении: