Корреляция: её виды и методы расчета

Автор работы: Пользователь скрыл имя, 10 Марта 2014 в 12:38, контрольная работа

Краткое описание

Корреляционные или статистические связи, при которых численному значению одной переменной соответствует много значений другой переменной.
Пример, между ростом и весом детей существует бесспорная зависимость, но это не значит, что определенному росту строго соответствует определенный вес. В силу участия в формировании веса многих других факторов, каждому значению роста соответствует несколько значений веса, которые могут быть выражены в виде распределения.

Содержание

Введение………………………………………………………………… 3 стр.
1. Понятие корреляция……………………...……………………… 4 – 5 стр.
2. Корреляционные связи………………………………………….. 5 – 8 стр.
3. Корреляционный анализ……………………..………………… 8 – 10 стр.
4. Коэффициенты корреляции………………...………………… 11 – 15 стр.

Заключение……………………………………………………………. 16 стр.
Список использованной литературы………………………………. ..17 стр.

Прикрепленные файлы: 1 файл

корреляция.doc

— 222.00 Кб (Скачать документ)

 

 

 

 

4. Коэффициенты корреляции.

 
Коэффициенты корреляции является общепринятой в математической статистике характеристикой связи между двумя случайными величинами. Коэффициент корреляции - показатель степени взаимозависимости, статистической связи двух переменных; изменяется в пределах от -1 до +1. Значение коэффициента корреляции 0 указывает на возможное отсутствие зависимости, значение +1 свидетельствует о согласованности переменных.

Различают следующие коэффициенты корреляции:

- дихотомический - показатель связи признаков (переменных) измеряемых по дихотомическим шкалам наименований;

- Пирсона (Pearson product-moment correlation) - коэффициент  корреляции, используемый для континуальных  переменных;

- ранговой корреляции Спирмена (Spearmen's rank-order correlation) - коэффициент корреляции для переменных, измеренных в порядковых (ранговых) шкалах;

- точечно-бисериальной корреляции (point-biserial correlation) - коэффициент корреляции, применяемый в случае анализа  отношения переменных, одна из  которых измерена в континуальной шкале, а другая - в строго дихотомической шкале наименований;

- j - коэффициент корреляции, используемый  в случае, если обе переменные  измерены в дихотомической шкале  наименований.

- тетрахорический (четырехпольный) (tetrachoric) - коэффициент корреляции, используемый в случае, если обе переменные измерены в континуальных шкалах[4].

Линейная связь между переменными Xi и Xj оценивается коэффициентом корреляции:

,

где Xi и Xj – исследуемые переменные; mXi и mXj – математические ожидания переменных; σX и σX – дисперсии переменных.

Выборочный коэффициент корреляции определяют по формуле:

 

или по преобразованной формуле:

 

где i =1, 2, ..., n, j = 1, 2, ..., m, u = 1, 2, ..., N; N – число опытов(объем выборки); xi, xj – оценки математических ожиданий; SXi, SXj – оценки среднеквадратических отклонений.

Только при совместной нормальной распределенности исследуемых случайных величин Xi и Xj коэффициент корреляции имеет определенный смысл связи между переменными. В противном случае коэффициент корреляции может только косвенно характеризовать эту связь.

 

Нормированный коэффициент корреляции Браве-Пирсона.

 

В качестве оценки генерального коэффициента корреляции р используется коэффициент корреляции r Браве-Пирсона. Для его определения принимается предположение о двумерном нормальном распределении генеральной совокупности, из которой получены экспериментальные данные. Это предположение может быть проверено с помощью соответствующих критериев значимости. Следует отметить, что если по отдельности одномерные эмпирические распределения значений xi и yi согласуются с нормальным распределением, то из этого еще не следует, что двумерное распределение будет нормальным. Для такого заключения необходимо еще проверить предположение о линейности связи между случайными величинами Х и Y. Строго говоря, для вычисления коэффициента корреляции достаточно только принять предположение о линейности связи между случайными величинами, и вычисленный коэффициент корреляции будет мерой этой линейной связи. 
Коэффициент корреляции Браве–Пирсона ( ) относится к параметрическим коэффициентам и для практических расчетов вычисляется по формуле:

 

Из формулы видно, что для вычисления   необходимо найти средние значения признаков Х и Y, а также отклонения каждого статистического данного от его среднего  . Зная эти значения, находятся суммы  . Затем, вычислив значение  , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным для f = n –2. Если  , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если  , то между признаками наблюдается недостоверная корреляционная взаимосвязь.

 

Коэффициент ранговой корреляции Спирмена.

 
Если потребуется установить связь между двумя признаками, значения которых в генеральной совокупности распределены не по нормальному закону, т. е. предположение о том, что двумерная выборка (xi и yi) получена из двумерной нормальной генеральной совокупности, не принимается, то можно воспользоваться коэффициентом ранговой корреляции Спирмена ( ):

 

 

где dx и dy – ранги показателей xi и yi; n – число коррелируемых пар.

Коэффициент ранговой корреляции также имеет пределы 1 и –1. Если ранги одинаковы для всех значений xi и yi, то все разности рангов (dx - dy) = 0 и = 1. Если ранги xi и yi расположены в обратном порядке, то  = -1. Таким образом, коэффициент ранговой корреляции является мерой совпадения рангов значений xi и yi.

Когда ранги всех значений xi и yi строго совпадают или расположены в обратном порядке, между случайными величинами Х и Y существует функциональная зависимость, причем эта зависимость не обязательно линейная, как в случае с коэффициентом линейной корреляции Браве-Пирсона, а может быть любой монотонной зависимостью (т. е. постоянно возрастающей или постоянно убывающей зависимостью). Если зависимость монотонно возрастающая, то ранги значений xi и yi совпадают и  = 1; если зависимость монотонно убывающая, то ранги обратны и  = –1. Следовательно, коэффициент ранговой корреляции является мерой любой монотонной зависимости между случайными величинами Х и Y.

Из формулы видно, что для вычисления   необходимо сначала проставить ранги (dx и dy) показателей xi и yi, найти разности рангов (dx - dy) для каждой пары показателей и квадраты этих разностей (dx - dy)2. Зная эти значения, находятся суммы  , учитывая, что  всегда равна нулю. Затем, вычислив значение  , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным. Если  , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если  , то между признаками наблюдается недостоверная корреляционная взаимосвязь.

Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.

Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:

- если экспериментальные данные  представляют собой точно измеренные  значения признаков Х и Y и требуется  быстро найти приближенную оценку  коэффициента корреляции. Тогда  даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента   при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций;

- когда значения xi и (или) yi заданы  в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.

 

Основные свойства коэффициентов корреляции.

 

К основным свойствам коэффициента корреляции необходимо отнести следующие:

- коэффициенты корреляции способны  характеризовать только линейные  связи, т.е. такие, которые выражаются  уравнением линейной функции. При  наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи;

- значения коэффициентов корреляции  – это отвлеченные числа, лежащее  в пределах от —1 до +1, т.е. -1 < r < 1;

- при независимом варьировании  признаков, когда связь между  ними отсутствует, r = 0;

- при положительной, или прямой, связи, когда с увеличением значений  одного признака возрастают значения  другого, коэффициент корреляции  приобретает положительный знак  и находится в пределах от 0 до +1, т.е. 0 < r < 1;

- при отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1, т.е. -1 < r <0;

- чем сильнее связь между  признаками, тем ближе величина коэффициента корреляции к 1. Если r = ±1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y;

- только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы f = n –2, где n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение.

 

Задачи с одним выходным параметром имеют очевидные преимущества. Но на практике чаще всего приходится учитывать несколько выходных параметров. Иногда их число довольно велико. Так, например, при производстве резиновых и пластмассовых изделий приходится учитывать физико-механические, технологические, экономические, художественно-эстетические и другие параметры (прочность, эластичность, относительное удлинение и т.д.). Математические модели можно построить для каждого из параметров, но одновременно оптимизировать несколько функций невозможно.

Обычно оптимизируется одна функция, наиболее важная с точки зрения цели исследования, при ограничениях, налагаемых другими функциями. Поэтому из многих выходных параметров выбирается один в качестве параметра оптимизации, а остальные служат ограничениями. Всегда полезно исследовать возможность уменьшения числа выходных параметров. Для этого и используется корреляционный анализ.

С использованием результатов корреляционного анализа исследователь может делать определённые выводы о наличии и характере взаимозависимости, что уже само по себе может представлять существенную информацию об исследуемом объекте. Результаты могут подсказать и направление дальнейших исследований, и совокупность требуемых методов, в том числе статистических, необходимых для более полного изучения объекта.

Особенно реальную пользу применение аппарата корреляционного анализа может принести на стадии ранних исследований в областях, где характеры причин определённых явлений ещё недостаточно понятны. Это может касаться изучения очень сложных систем различного характера: как технических, так и социальных.

 

 

 

 

 

 

Список литературы:

 

1. Лисицын Ю.П. Общественное здоровье и здравоохранение. Учебник для вузов. — М.: ГЭОТАР-МЕД, 2007. — 512 с.

2. Медик В.А., Юрьев В.К. Курс лекций по общественному здоровью и здравоохранению: Часть 1. Общественное здоровье. — М.: Медицина, 2003.  368 с.

3. Миняев В.А., Вишняков Н.И. и др. Социальная медицина и организация здравоохранения (Руководство в 2 томах). — СПб, 1998. -528 с.

4. Сидоренко Е.В. Методы математической обработки в психологии. Спб.: ООО «Речь», 2000. – 350 с.

5. Лекция на тему: "Корреляционный анализ''// www.kgafk.ru, 2006, 8 с.

6. Ковалев В.В, Волкова О.Н., Анализ хозяйственной деятельности предприятия// polbu.ru, 2005, 2 с.

 

 

 

 

 


 



Информация о работе Корреляция: её виды и методы расчета