Эволюция и микроорганизмы: доклеточный мир, первые клетки, эволюция метаболических путей

Автор работы: Пользователь скрыл имя, 08 Мая 2014 в 09:01, реферат

Краткое описание

Вопрос о происхождении и путях эволюции микроорганизмов представляет особый интерес, так как он напрямую связан с вопросом о происхождении и путях эволюции живой материи.
Первые следы жизни относятся к периоду более 3 млрд. лет назад; это были микроорганизмы, которые преобладали в биосфере Земли до периода около 0,5 млрд. лет назад. Таким образом, прокариоты не только стоят у истоков земной жизни, из них не только развилось все многообразие эукариотических форм, но они и после этого существовали всегда. Высшие формы жизни на протяжении своей эволюции никогда не были одиноки; их постоянно либо теснили, либо поддерживали вездесущие одноклеточные организмы

Содержание

Введение 3
Глава 1. Доклеточный мир 4
1.1 Условия на древней Земле 4
1.2. Возникновение пространственно обособленных микросистем 6
Глава 2. Первые клетки 10
Глава 3. Эволюция метаболических путей у прокариот 11
3.1. Брожение. Типы жизни, основанные на субстратном фосфорилировании 11
3.1.2. Спиртовое брожение 14
3.1.3. Пропионовокислое брожение 16
3.1.4. Маслянокислое брожение 19
3.1.5. Альтернативные пути сбраживания углеводов 21
3.1.5.1. Окислительный пентозофосфатный путь 21
3.1.5.2. Путь Энтнера-Дудорова 24
3.2. Фотосинтез. Типы жизни, основанные на фотофосфорилировании. 26
3.2.1. Пигменты фотосинтезирующих эубактерий 28
3.2.2.Экзогенные доноры электронов в бескислородном фотосинтезе 34
3.2.3. Возникновение второй фотосистемы 36
3.3. Дыхание. Типы жизни, основанные на дыхании 37
3.3.1. Группы хемолитотрофных эубактерий 38
3.3.2.Группы хемоорганотрофных эубактерий 41
Заключение 43
Список литературы 45

Прикрепленные файлы: 1 файл

Эволюция и микроорганизмы.docx

— 1.11 Мб (Скачать документ)

Глава 3. Эволюция метаболических путей у прокариот

3.1. Брожение. Типы жизни, основанные на субстратном фосфорилировании

Наиболее примитивным способом получения энергии, присущим определенным группам эубактерий, являются процессы брожения.

«Брожение» - это сугубо микробиологический термин. Он характеризует энергетическую сторону способа существования нескольких групп эубактерий, при котором они осуществляют в анаэробных условиях окислительно-восстановительные превращения органических соединений, сопровождающиеся выходом энергии, которую эти микроорганизмы используют. Поскольку брожение протекает без участия молекулярного кислорода, все окислительно-восстановительные превращения субстрата происходят за счет его «внутренних» возможностей. Процесс брожения связан с такими перестройками органических молекул субстрата, в результате которых на окислительных этапах процесса высвобождается часть свободной энергии, заключенной в молекуле субстрата и происходит ее запасание в молекулах АТФ. В процессе брожения, как правило, происходит расщепление углеродного скелета молекулы субстрата.

Круг органических соединений, которые могут сбраживаться, довольно широк. Это углеводы, спирты, органические кислоты, аминокислоты, пурины, пиримидины. Продуктами брожения являются различные органические кислоты (молочная, масляная, уксусная, муравьиная), спирты (этиловый, бутиловый, пропиловый), ацетон, а также СО2 и Н2 . В зависимости от того, какой конечный продукт накапливается в среде, различают молочнокислое, спиртовое, маслянокислое, пропионовокислое и другие виды брожений.

Следовательно, в каждом виде брожения можно выделить две стороны: окислительную и восстановительную. Процессы окисления сводятся к отрыву электронов от определенных метаболитов с помощью специфических ферментов (дегидрогеназ) и акцептированию их другими молекулами, образующимися из сбраживаемого субстрата, т.е. в процессе брожения происходит окисление анаэробного типа.

Примитивность процессов брожения заключается в том, что из субстрата извлекается лишь незначительная доля той химической энергии, которая в нем содержится. Продукты, образующиеся в процессе брожения, все еще содержат в себе значительное количество энергии, заключающейся в исходном субстрате.

3.1.1. Гомоферментативное молочнокислое брожение

Последовательность биохимических реакций, лежащих в основе гомоферментного молочнокислого брожения получило название гликолитического пути (гликолиза), фруктозодифосфатного пути, или пути Эмбдена-Мейергофа-Парнаса, по именам исследователей, внесших большой вклад в изучение этого процесса.

Основными энергетическими ресурсами для эубактерий служат моносахара (в первую очередь глюкоза) и дисахара (мальтоза, лактоза) (Рис.3.). В процессе подготовки к энергетическим преобразованиям дисахара ферментативным путем расщепляются до моносахаров. Различные моносахара должны превратиться к глюкозо-6-фосфат. Момент унификации очень важен. От того, что служит исходным энергетическим ресурсом, зависит общий энергетический баланс процесса.

Гомоферментативное молочнокислое брожение представляет собой энергетическую сторону образа жизни группы гомоферментативных молочнокислых бактерий. В процессе гомоферментативного молочнокислого брожения существуют 3 типа химических превращений:

    • перестройка углеродного скелета исходного субстрата;
    • окислительно-восстановительные превращения;
    • образование АТФ

 

 

 

 

 

 

 

Рис.3. Гомоферментативное молочнокислое брожение.

Ф1 – гексокиназа; Ф2 – глюкозофосфатизомераза; Ф3 – фосфофруктокиназа; Ф4- фруктозо-1,6-дифосфат-альдолаза; Ф5 – триозофосфатизомераза; Ф6 – 3ФГА-дегидрогеназа, Ф7- фосфоглицераткиназа; Ф8- фосфоглицеромутаза; Ф9- енолаза; Ф10- пируваткиназа; Ф11- лактатдегидрогеназа

Энергетический выход процесса таков: образование 2 молекул АТФ на молекулу глюкозы. Энергетическая эффективность процесса, т.е. эффективность запасания выделяемой свободной энергии в молекулах АТФ, составляет примерно 40%. Энергия запасается только в реакциях субстратного фосфорилирования. Как можно видеть из суммирования энергетических характеристик, низкий энергетический выход сочетается в нем с высокой энергетической эффективностью, а в основе всего лежат простые механизмы получения энергии. Это результат того, что процесс «замкнут на себя», т.е. субстрат является и источником веществ – доноров электронов и источником веществ – их акцепторов.

Возникнув как первый, далекий от софершенства энергитический процесс, гомоферментативное молочнокислое брожение не было потом отброшено в процессе эволюции. Наоборот, оно закрепилось и существует сейчас в виде гликолиза у подавляющего большинства прокариот, дрожжей, грибов, а также у высших животных и растений, но только как первый этап более совершенного энергетического процесса, сформировавшегося в результате последующего развития способов получения энергии живыми организмами. Вероятно, оказалось выгодно использовать данный процесс в качестве первого подготовительного этапа по следующим причинам: 1) высокая энергетическая эффективность (не путать с энергетическим выходом процесса!); 2) простота механизмов получения энергии; 3) перестройка исходного субстрата в форму, метаболически удобную для последующих превращений.

Бактерии, входящие в данную группу, морфологически различны. Это кокки, относящиеся к родам Streptococcus и Pediococcus, а также длинные или короткие палочки из рода Lactobacillus. Последний подразделяется на три подрода. Бактерии, включенные в два из них (Thermobacterium, Streptobacterium), также осуществляют гомоферментативное молочнокислое брожение.

3.1.2. Спиртовое брожение

Дальнейшие поиски на путях эволюции привели к формированию других метаболических возможностей для решения донор-акцепторной проблемы. Одна из них заключается в том, что из пировиноградной кислоты в результате ее окислительного декарбоксилирования образуется ацетальдегид, который становится конечным акцептором фодорода. Витоге из 1 молекулы гексозы образуется 2 молекулы этилового спирта и 2 молекулы углекислоты. Процесс получил название спиртового брожения. Спиртовое брожение распространено среди прокариотных (различные облигатно и факультативно анаэробные эубактерии) и эукариотных (дрожжи) форм.

Процесс спиртового брожения до последней реакции идет по тому же пути, что и описанный выше процесс молочнокислого брожения, но последняя реакция заменена двумя другими ферментативными реакциями. Сначала пируват с помощью пируватдекарбоксилазы, ключевого фермента спиртового брожения, декарбоксилируется до ацетальдегида и СО2:

Особенность реакции заключается в ее полной необратимости.

Образовавшийся ацетальдегид восстанавливается до этанола с участием НАД+-зависимой алкогольдегидрогеназы:

Донором водорода служит 3-ФГА (как и в случае молочнокислого брожжения).

Процесс спиртового брожения суммарно можно выразить следующим уравнением:

Как видно из уравнения, с т.з. энергетического выхода оба процесса (гомоферментативное молочнокислое и спиртовое брожение) одинаковы. В обоих случаях сбраживание 1 молекулы глюкозы приводит к образованию 2 молекул АТФ. Процессы различаются природой конечных акцепторов электронов.

Способность осуществлять в анаэробных условиях спиртовое брожение присуща некоторым эубактериям, принадлежащим к разным таксономическим группам, например Sarcina ventriculi, Erwinia amylovora, Zymomonas mobilis.

 

 

3.1.3. Пропионовокислое брожение

Из рассмотренных двух типов брожения видно, что ключевым соединением является пируват, поскольку в конечном итоге специфика брожения определяется дальнейшей судьбой пирувата. Основная задача последующих реакций — регенерирование молекулы НАД+ и возвращение ее в клеточный метаболизм. Прямое восстановление пирувата с помощью НАД•H2 до молочной кислоты реализуется в молочнокислом брожении. Другая возможность регенерирования НАД+ — "сбрасывание" водорода с НАД•H2 на фрагменты, образуемые при метаболизме пирувата, — имеет место в спиртовом брожении, осуществляемом дрожжами и некоторыми видами бактерий. Третья возможность связана с синтетическим процессом — усложнением молекулы пирувата, в результате которого создается более окисленная молекула акцептора, способная принять больше электронов с восстановленных переносчиков. Это происходит при присоединении к молекуле пирувата CO2, приводящем к формированию четырехуглеродного скелета. Процесс получил название гетеротрофной ассимиляции углекислоты.


 

 

 

 

Рис. 4. Превращение пировиноградной кислоты в пропионовую при пропионовокислом брожении: Ф1 — метилмалонил-КоА-карбоксилтрансфераза; Ф2 — малатдегидрогеназа; Ф3 — фумараза: Ф4 — фумаратредуктаза; Ф5 — КоА-трансфераза; Ф6 — метилмалонил-КоА-мутаза

В пропионовокислом брожении мы имеем дело с реализацией третьей возможности превращения пирувата — его карбоксилированием, приводящим к возникновению нового акцептора водорода — ЩУК. Восстановление пировиноградной кислоты в пропионовую у пропионовокислых бактерий протекает следующим образом (рис. 4). Пировиноградная кислота карбоксилируется в реакции, катализируемой биотинзависимым ферментом, у которого биотин выполняет функцию переносчика CO2. Донором CO2-группы служит метилмалонил-КоА. В результате реакции транскарбоксилирования образуются ЩУК и пропионил-КоА:


 

Пропионовокислое брожение — более сложный процесс, поскольку наряду с пропионовой кислотой в качестве продуктов брожения образуются уксусная, янтарная кислоты и CO2. В схеме, изображенной на рис. 5, янтарная кислота образуется как промежуточное соединение на пути, ведущем к синтезу пропионата; но она может накапливаться в среде и как конечный продукт. К образованию сукцината, количество которого зависит от содержания CO2 в среде, ведет последовательность реакций, начинающаяся с карбоксилирования ФЕП (рис. 5), в которой остаток фосфорной кислоты ФЕП переносится на неорганический фосфат, что приводит к образованию пирофосфата.


 

 

 

Рис. 5. Пути образования янтарной, уксусной кислот и

CO2 пропионовыми бактериями:

Ф1 — ФЕП-карбокситрансфосфорилаза;

Ф2 — пируватдегидрогеназа;

 Ф3 — фосфотрансацетилаза;

 Ф4 — ацетаткиназа.

 

 

 

 

 

Теоретически пропионовое брожение должно приводить к образованию 4 молекул АТФ при сбраживании 1,5 молекулы глюкозы. Однако было обнаружено, что выход энергии несколько выше. Источником дополнительных молекул АТФ, возможно, является этап восстановления фумаровой кислоты до янтарной, катализируемый фумаратредуктазой (см. рис. 4). Получены экспериментальные данные в пользу того, что восстановление фумарата до сукцината — процесс, в результате которого некоторые первично анаэробные эубактерии могут синтезировать АТФ по механизму фосфорилирования, сопряженного с переносом электронов. Показано, что фумаратредуктаза связана с мембраной и образует комплекс с переносчиком электронов хиноном. В составе комплекса обнаружен цитохром b. Фумаратредуктазная система найдена у пропионовых бактерий. Этой системе придается большое значение в эволюции как, возможно, первому шагу на пути создания многокомпонентных электронтранспортных цепей у эубактерий.

Энергетическая эффективность пропионовокислого брожения связана также с выработкой пропионовыми бактериями новых метаболических способностей: реакций транскарбоксилирования и перегруппировки, участия в процессе КоА-производных. Образование дикарбоновой кислоты из пировиноградной с использованием механизма транскарбоксилирования вместо прямого карбоксилирования пирувата позволяет избежать дополнительных энергетических затрат на этом этапе брожения. Все это вместе взятое позволяет рассматривать пропионовокислое брожение как более совершенный из рассмотренных до сих пор способов получения энергии в анаэробных условиях.

В эту группу, объединяемую в род Propionibacterium, входят грамположительные, неподвижные, не образующие спор палочковидные бактерии, размножающиеся бинарным делением. В зависимости от условий культивирования и цикла развития форма клетки может меняться до кокковидной, изогнутой или булавовидной. Типовой вид — P. freudenreichii.

 

3.1.4. Маслянокислое брожение

Следующий вариант решения донор-акцепторной проблемы на базе гликолитически образованного пирувата представляет собой маслянокислое брожение. Новое в маслянокислом брожении — возникновение реакций конденсации типа С2 + С2 → С4, в результате чего образуется С4-акцепторная кислота. Судьба этой кислоты различна и определяется необходимостью акцептирования водорода с НАД•H2, освобождающегося в процессе брожения, а это в свою очередь тесно связано с оттоком водорода на конструктивные процессы. В качестве конечных C4-продуктов в процессе брожения возникают соединения различной степени восстановленности. Характерным C4-продуктом брожения является масляная кислота. Осуществляют такой тип брожения многие бактерии, относящиеся к роду Clostridium.

 

 

 

 

Рис.6. Пути превращения пирувата в маслянокислом брожении,

осуществляемом Clostridium butyricum:

Ф1 — пируват:ферредоксиноксидоредуктаза;

Ф2 — ацетил-КоА-трансфераза (тиолаза);

Ф3 — (3-оксибутирил-КоА-дегидрогеназа;

Ф4 — кротоназа;

Ф5 — бутирил-КоА-дегидрогеназа;

 Ф6 — КоА-трансфераза;

Ф7 — фосфотрансацетилаза;

Ф8 — ацетаткиназа;

Ф9 — гидрогеназа;

Фдок — окисленный;

Фд-H2 — восстановленный ферредоксин;

ФН — неорганический фосфат

 

 

 

 

 

 

 

 

 

 

Путь, ведущий к синтезу масляной кислоты, начинается с реакции конденсации двух молекул ацетил-КоА (см. рис. 6). Образовавшийся ацетоацетил-КоА восстанавливается в β-оксибутирил-КоА. Источником электронов в этой реакции и дальше на пути синтеза масляной кислоты служат молекулы НАД•H2, образующиеся при окислении 3-ФГА в 1,3-ФГК.

Информация о работе Эволюция и микроорганизмы: доклеточный мир, первые клетки, эволюция метаболических путей