Искусственные органы

Автор работы: Пользователь скрыл имя, 05 Мая 2013 в 21:51, реферат

Краткое описание

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы — вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Содержание

Что такое искусственные органы.
Механические свойства биологических тканей:мышц, костей.
Физико-химические свойства полимеров.
Биополимеры как структурная основа живых организмов.
Использование искусственных материалов при протезировании.
Искусственные механические органы ( зубные протезы, металлические суставы и связки,.электронные протезы конечностей…)
Искусственные внутренние органы: искусственное сердце, легкое, печень, почки
Искусственная кровь.
Идеальные искусственные органы.
Искусственные мембраны.
Перспективы использования стволовых клеток.

Прикрепленные файлы: 1 файл

SRS_Iskusstvennye_organy.doc

— 128.50 Кб (Скачать документ)

АО «Медицинский университет  Астана»

Кафедра информатики  и математики с курсом медбиофизики

 

 

 

 

 

 

 

СРС

 

На тему: «Искусственные органы»

 

 

 

 

 

 

 

 

 

 Выполнил: Рахалиева А.А; Стом. 103

                                                   Проверил: Масликова Е.И.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Астана 2012

 

План 

 

  1. Что такое искусственные органы.
  2. Механические свойства биологических тканей:мышц, костей.
  3. Физико-химические свойства полимеров.
  4. Биополимеры как структурная основа живых организмов.
  5. Использование искусственных материалов при протезировании.
  6. Искусственные механические органы ( зубные протезы, металлические суставы и связки,.электронные протезы конечностей…)
  7. Искусственные внутренние органы: искусственное сердце, легкое, печень, почки
  8. Искусственная кровь.
  9. Идеальные искусственные органы.
  10. Искусственные мембраны.
  11. Перспективы использования стволовых клеток.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Современная медицинская  техника позволяет заменять полностью  или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы — вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Искусственные органы — это устройства, предназначенные для временной или постоянной активной замены утраченной функции природного прототипа (правда, эта функция еще не может быть замещена полностью, особенно если конкретный прототип, например легкое, печень, почка или поджелудочная железа, обладает комплексом сложных функций). С искусственным органом не следует отождествлять функциональный протез — устройство, пассивно воспроизводящее основную утраченную функцию природного прототипа за счет своей формы или конструктивной особенности. Первые исследования по этому разделу выполнил С. С. Брюхоненко, создавший автожектор (1928)—первое в мире искусственное сердце. Большое значение имело изобретение искусственной почки Колфом (1944). Искусственные органы можно подразделить на не имплантируемые и частично или полностью имплантируемые. Примером имплантируемого искусственного органа, временно и прерывисто возмещающего утраченную жизненно важную функцию организма, является искусственная почка, обеспечивающая экстракорпоральный гемодиализ. Этот искусственный орган уже нашел широкое клиническое применение как в комплексном методе длительного лечения хронической почечной недостаточности, так и для временного поддержания жизнедеятельности организма в период подбора донорской почки для ее трансплантации, а также в восстановительном периоде сразу же после операции и при подготовке к повторным трансплантациям, если они необходимы. К неимплантируемым временно действующим искусственным органам относится оксигенатор (искусственное легкое), который используется в кардиохирургии при операциях на открытом сердце и в специальных перфузионных системах для интенсивного лечения острой дыхательной недостачточности. К числу полностью имплантируемых устройств, постоянно и непрерывно выполняющих функцию природного аналога, следует отнести искусственные клапаны сердца. На первых этапах их разработки кардиохирурги н инженеры стремились воспроизвести конструкцию природного прототипа. Однако значительно более долговечными и оптимальными по гемодинамическим параметрам оказались совсем иные—шариковые, полусферические н дискообразные каркасные конструкции искусственных клапанов сердца, которые н нашли широкое применение в кардиохирургической практике. В качестве имплантируемых устройств применяются элсктрокардиостимулиторы, постоянно н непрерывно возмещающие функцию пронодящей системы естественного сердца. Их используют и как внешние неимплантируемые аппараты, временно применяемые н критических ситуациях до имплантации постоянного электрокардиостимулятора. Усилия ученых сосредоточены на создании для клинического применения трех искусственных жизненно важных органов — сердца, печени, поджелудочной железы, а также на дальнейшем совершенствовании разнообразных моделей искусственной почки.

 

Механические  свойства биологических тканей.

 

Рассмотрим важнейшие  механические свойства биологических  тканей, благодаря которым осуществляются разнообразные механические явления

 

- такие, как функционирование  опорно-двигательного аппарата, процессы деформаций тканей и клеток, распространение волн упругой деформации, сокращения и расслабление мышц, движение жидких и газообразных биологических сред. Среди этих свойств выделяют:

 

- упругость - способность  тел возобновлять размеры (форму или объем) после снятие нагрузок;

 

- жесткость - способность  материала противодействовать внешней  нагрузкой; 

 

эластичность - способность  материала изменять размеры под  действием внешних нагрузок;

 

- прочность - способность  тел противодействовать разрушению под действием внешних сил;

 

- пластичность - способность  тел хранить (полностью или  частично) изменение размеров после  снятия нагрузок;

 

- хрупкость - способность  материала разрушаться без образования  заметных остаточных деформаций;

 

- вязкость - динамическое свойство, которое характеризует способность тела противодействовать изменению его формы при действии тангенциальных напряжений;

 

- текучесть - динамическое  свойство среды, которое характеризует

 

способность отдельных  его слоев перемещаться с некоторой скоростью в пространстве относительно других слоев этой среды.

 

Механические  свойства мышц

 

Основная функция мышц состоит в преобразовании химической энергии в механическую работу или  силу. Главными биомеханическими показателями, характеризующими деятельность мышцы, являются: а) сила, регистрируемая на ее конце (эту силу называют натяжением или силой тяги мышцы) и б) скорость изменения длины. При возбуждении мышцы изменяется ее механическое состояние; эти изменения называют сокращением. Оно проявляется в изменении натяжения и длины мышцы, а также других ее механических свойств (упругости, твердости и др.) Механические свойства мышц сложны и зависят от механических свойств элементов, образующих мышцу (мышечные волокна, соединительные образования и т.п.), и состояния мышцы (возбуждения, утомления и пр.) Понять многие из механических свойств мышцы помогает упрощенная модель ее строения - в виде комбинации упругих и сократительных компонентов. Упругие компоненты по механическим свойствам аналогичны пружинам: чтобы их растянуть, нужно приложить силу. Работа силы равна энергии упругой деформации, которая может в следующей фазе движения перейти в механическую работу. Различают: а) параллельные упругие компоненты (ПарК) - соединительнотканные образования, составляющие оболочку мышечных волокон и их пучков, и б) последовательные упругие компоненты (ПосК) - сухожилия мышцы, места перехода миофибрилл в соединительную ткань, а также отдельные участки саркомеров, точная локализация которых в настоящее время неизвестна.Сократительные (контрактильные) компоненты соответствуют тем участкам саркомеров мышцы, где актиновые и миозиновые миофиламенты перекрывают друг друга. В этих участках при возбуждении мышцы происходит механическое взаимодействие между актиновыми и миозиновыми филаментами, приводящее к изменению натяжения и длины мышцы. Поскольку каждая миофибрилла состоит из большого числа (n) последовательно расположенных саркомеров, то величина и скорость изменения длины миофибриллы в п раз больше, чем у одного саркомера. Сила, развиваемая каждым из них, одинакова и равна силе, регистрируемой на конце миофибриллы (подобно тому, как равны силы в каждом из звеньев цепи, к концам которой приложены растягивающие силы). Эти же самые n саркомеров, соединенные параллельно (что соответствует большему числу миофибрилл), дали бы кратное увеличение в силе, но при этом скорость изменения длины мышцы была бы той же, что и скорость одного саркомера. Поэтому при прочих равных условиях увеличение физиологического поперечника мышцы привело бы к увеличению ее силы, но не изменило бы скорости укорочения, и наоборот, увеличение длины мышцы сказалось бы положительно на скорости сокращения, но не повлияло бы на ее силу. Покоящаяся мышца обладает упругими свойствами: если к ее концу приложена внешняя сила, мышца растягивается (ее длина увеличивается), а после снятия внешней нагрузки восстанавливает свою исходную длину. Зависимость между величиной нагрузки и удлинением мышцы непропорциональна (не подчиняется закону Гука). Сначала мышца растягивается легко, а затем даже для небольшого удлинения надо прикладывать все большую силу (иногда мышцу в этом отношении сравнивают с вязаными вещами: если растягивать, скажем, трикотажный шарф, то вначале он легко изменяет свою длину, а затем становится практически нерастяжимым). Если мышцу растягивать повторно через небольшие интервалы Времени, то ее длина увеличится больше, чем при однократном «содействии. Это свойство мышц широко используется в практике при выполнении упражнений на гибкость (пружинистые движения, повторные махи и т.п.). Длина, которую стремится принять мышца, будучи освобожденной от всякой нагрузки, называется равновесной (или свободной). При такой длине мышцы ее упругие силы равны нулю. В живом организме длина мышцы всегда несколько больше равновесной и поэтому даже расслабленные мышцы сохраняют некоторое натяжение. Для мышц характерно также такое свойство, как релаксация - снижение силы упругой деформации с течением времени. При отталкивании в прыжках с места сразу после быстрого приседания прыжок будет выше, чем при отталкивании после паузы в низшей точке подседа: после паузы упругие силы, возникшие при быстром приседании, вследствие релаксации не используются.

 

Механические  свойства костной ткани.

 

 Кость – основной  материал опорно-двигательного аппарата. Две трети массы компактной костной ткани (0,5 объема) составляет неорганический материал, минеральное вещество кости – гидроксилантит 3 Са3(РО) х Са(ОН)2.

Это вещество представлено в форме микроскопических кристалликов.

Плотность костной ткани равна 2400 кг/м3 , ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуальных условий роста организма и, конечно, от участка организма. Строение кости придает ей нужные механические свойства: твердость, упругость и прочность. Компактная костная ткань обладает специфичным композиционным строением. Она представляет собой среду с пятью структурными уровнями. Плотность костной ткани приблизительно равна 2,4 г/см3. Возраст оказывает существенное влияние на прочность костной ткани. С увеличением возраста в костной ткани появляются изменения её химического состава и внутренней структуры.Из экспериментов установлено, что для костной ткани самым опасным является растягивающее напряжение.

Диаграмма   s - e   костной ткани показана на рисунке.


 

 

 

 

 

 


При небольших деформациях  для костей справедлив закон Гука: напряжение пропорционально относительной деформации, модуль упругости не зависит от напряжения. Модуль упругости костей может достигать ~ 109 Н/м2, то есть может превышать эффективные модули упругости мышц практически при всех нетравмирующих нагрузках.

      Прочность костной ткани на растяжение при разрушении меняется от 150 до 177                            МПа в зависимости от зоны поперечного сечения, с которой взят соответствующий экспериментальный образец. Эта прочность зависит от прочности отдельных компонентов: гидроксилапатита - с 600 до 700 МПа, коллагена - с 50 до 100 МПа Принимается, что волокна костной ткани деформируются преимущественно упругим образом, а матрицы (остальная ткань) - пластически и разрушаются хрупким образом. Прочность костей на сжатие высокая. Несущая способность бедренной кости в продольном направлении выше 45000 Н для мужчин и 39000 Н для женщин. Образцы компактной кости, взятые с разных мест, обладают предельными напряжениями на сжатие  от  120  до 170МПа. Несущая способность костей при изгибе значительно меньше. Так, например, бедренная кость выдерживает нагрузку на изгиб до 2500 Н. Установлено, что прочность на кручение является наибольшей в возрасте от 25 до 35 лет (105,4 МПа), и после этого постепенно убывает. Для возрастной группы с 75 до 89 лет она достигает в среднем 90,3МПа

 

Полимеры. Физико-химические свойства полимеров.

 

 

   Полимерами называют  вещества, молекулы которых представляют собой длинные цепи, составленные из большого числа атомов или атомных группировок, соединенных химическими связями. Особенность химического строения полимеров обусловливает и их особые физические свойства. Наиболее резко отличаются полимеры от низкомолекулярных веществ в механических свойствах. Известно, что для твердых тел характерны большие прочности при малых обратимых деформациях. Жидкости обладают способностью к неограниченной деформации при весьма малой прочности.

   Полимеры –  это материал, механические свойства которых являются сочетанием свойств твердых тел и жидкостей; они достаточно прочны и вместе с тем способны к достаточно большим обратимым деформациям. К полимерным материалам относят почти все живые и растительные материалы, такие как шерсть, кожа, рог, волос, шелк, хлопок, натуральный каучук и т.п. а также всякого рода синтетические материалы – синтетический каучук, волокна и др. Кроме механических свойств полимеры обладают и другими особыми свойствами. Так например, их растворы имеют повышенную вязкость; упругость пара растворителя над раствором меньше, а осмотическое давление больше, чем должно быть для идеальных растворов. Полимеры способны сильно набухать в жидкостях.

   Длинноцепочечное  строение молекул полимеров способствует  образованию пленок и волокон. В настоящее время полимеры используются в качестве диэлектриков.Простейшим органическим полимером является полиэтилен,полмерная цепь или макромолекула которого составлена из многократно повторяющихся мономерных звеньев, образующихся при соединении молекул этилена:

n ∙ CH=  CH2  {− CH2 − CH2−} n.


 

В зависимости от химического  состава, строения и взаимного расположения макромолекул свойства полимеров могут  меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный  из гибких углеводородных цепей, при температуре около 20°С — эластичный материал, при температуре -60°С он переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20°С — твердый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100°С. Целлюлоза — полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235°С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80°С.

 

Биополимеры как  структурная основа живых организмов.

 

Биополиме́ры — класс  полимеров, встречающихся в природе  в естественном виде, входящие в  состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды. Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).

Белки имеют несколько уровней организации — первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой. Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются

α-спираль, когда водородные связи возникают между аминокислотами в одной цепи,

β-листы (складчатые слои), когда водородные связи образуются между разными полипептидными цепями, идущими в разных направлениях (антипараллельно), неупорядоченные участки. Для предсказания вторичной структуры используются компьютерные программы.

Третичная структура  или «фолд» образуется при взаимодействии вторичных структур и стабилируется  нековалентными, ионными, водородными  связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции  обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка), когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа. Важный класс полимерных белков составляют фибриллярные белки, самый известный из которых коллаген. В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп. Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы — ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, то есть обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок — инсулин — ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин — первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 106 и более.

Информация о работе Искусственные органы