Гормоны

Автор работы: Пользователь скрыл имя, 09 Марта 2014 в 14:06, реферат

Краткое описание

Выделяемые гормоны из эндокринных желез отличаются от других биологически активных веществ рядом свойств:
1. Действие гормонов носит дистантный характер, иными словами, органы, на которые гормоны действуют, расположены далеко от железы.
2. Действие гормонов строго специфично. Некоторые гормоны действуют лишь на определенные клетки – мишени, другие - на множество различных клеток.
3. Гормоны обладают высокой биологической активностью.
4. Гормоны действуют только на живые клетки.

Прикрепленные файлы: 1 файл

Гормоны.docx

— 49.16 Кб (Скачать документ)

Гормоны

Гормоны - это то, что делает нас особенным и непохожим на остальных. Они предопределяют наши физические и психические особенности. Вырастем мы высоким или не очень, полным или худым.

Наши гормоны влияют на все аспекты нашей жизни - с момента зачатия и до самой смерти. Они будут влиять на наш рост, половое развитие, формирование наших желаний, на обмен веществ в организме, на крепость мышц, на остроту ума, поведение, даже на наш сон.

Слово „гормон“ часто вызывает фривольные ассоциации: у кого-то они выделяются в избытке, да ещё и где-то играют. Но о том, как гормоны играют, мы поговорим в другой раз. Сейчас — о том, как они работают.

Эта удивительная управляющая система возникла в ходе эволюции, вероятно, чуть позже многоклеточности и одновременно с кровеносной системой. На самом деле даже одноклеточные существа небезразличны к химическим сигналам, приходящим извне, в том числе от других клеток. Но только у многоклеточных могла появиться изощрённая многоуровневая регуляция, известная под названием эндокринной системы.

Она управляет именно теми функциями организма, которые чаще всего бывают неподвластны воле и сознанию, от переработки питательных веществ до влюблённости, от роста рук, ног и туловища до колебаний настроения, от зачатия ребёнка до таинственной деятельности внутренних органов, которые многим своим хозяевам и по именам-то не известны. Вернее, наоборот: эти функции неподвластны воле, потому что управляются не нервной, а эндокринной системой. Специальные клетки в железах и тканях вырабатывают гормоны (от греч. hormamo — приводить в движение, побуждать). Эти вещества выделяются во внеклеточное пространство, в кровь и лимфу, а с их токами попадают в „мишени“ — органы и клетки и производят нужные эффекты. Примечательно, что они работают в очень низких концентрациях — до 10–11 моль/л.

Гормоны (от греч. hormao – привожу в движение, побуждаю) – биологически активные вещества, которые вырабатываются железами внутренней секреции и выделяются непосредственно в кровь, лимфу или ликвор. (Кононский). Они обладают строго специфическим и избирательным действием, способные повышать или понижать уровень жизнедеятельности организма.

Выделяемые гормоны из эндокринных желез отличаются от других биологически активных веществ рядом свойств:

1. Действие гормонов носит  дистантный характер, иными словами, органы, на которые гормоны действуют, расположены далеко от железы.

2. Действие гормонов строго  специфично. Некоторые гормоны действуют  лишь на определенные клетки  – мишени, другие - на множество  различных клеток.

3. Гормоны обладают высокой  биологической активностью.

4. Гормоны действуют только  на живые клетки.

1. Химическая природа  и классификация гормонов

 

Гормоны следует классифицировать по трем основным признакам.

1. По химической природе

2. По эффекту (знаку действия) – возбуждающие и тормозящие.

3. По месту действия  на органы – мишени или другие  железы: 1) эффекторные; 2) тропные.

В настоящее время описано и выделено более полутора сотен гормонов из разных многоклеточных организмов.

По химической природе гормоны делятся на следующие группы: белково-пептидные, производные аминокислот и стероидные гормоны. Первая группа — это гормоны гипоталамуса и гипофиза, поджелудочной и паращитовидной желёз и гормон щитовидной железы кальцитонин. Некоторые гормоны, например фолликулостимулирующий и тиреотропный, представляют собой гликопротеиды — пептидные цепочки, „украшенные“ углеводами. Пептидные и белковые гормоны обычно действуют на внутриклеточные процессы через специфические рецепторы, расположенные на поверхностной мембране клеток-мишеней. Гормонов имеющих белковую или полипептидную природу называют тропинами, так как они оказывают направленное стимулирующее действие на процессы роста и обмена веществ организма и на функцию периферических эндокринных желез. Рассмотрим некоторых гормонов белково-пептидной природы.

Тиреотропный гормон (тиреотропин) представляет собой сложный белок глюкопротеид с молекулярным весом около 10000. Он стимулирует функцию щитовидной железы, активирует ферменты протеазы и тем способствует распаду тиреоглобулина в щитовидной железе. В результате протеолиза освобождаются гормоны щитовидной железы – тироксин и трииодтиронин, которые поступают в кровь и с ней к соответствующим органам и тканям. Тиреотропин способствует накоплению иода в щитовидной железе, при этом в ней увеличивается число клеток и активируется их деятельность.

Тиреотропин выделятся гипофизом непрерывно в небольших количествах. Выделение его регулируется нейросекреторными веществами гипоталамуса.

Фолликулостимулирующий гормон обеспечивает развитие фолликул в яичниках и сперматогенез в семенниках. Представляет собой белок глюкопротеида с молекулярным весом 67000.

Производные аминокислот — это амины, которые синтезируются в мозговом слое надпочечников (адреналин и норадреналин) и в эпифизе (мелатонин), а также иодсодержащие гормоны щитовидной железы трииодтиронин и тироксин (тетраиодтиронин), из аминокислоты тирозина, которая, в свою очередь, синтезируется из незаменимой аминокислоты фенилаланина. К ним относятся гормоны мозгового слоя надпочечников норадреналин и адреналин, и гормоны щитовидной железы – трииодтиронин и тироксин.

Биохимическое изучение щитовидной железы началось с открытия содержания в ней значительных количеств иода (Бауман, 1896). Освальдом (1901) был обнаружен иодсодержащий белок тиреоглобулин. В 1919г. Кендалл при гидролизе тиреоглобулина выделил криссталическое вещество, содержащее около 60% иода. Эту аминокислоту он назвал тироксином (тетраиодтиронин). Образующийся в щитовидной железе тиреоглобулин не поступает в кровь как таковой. Он подвергается сначала ферментативному расщеплению, получившиеся при этом иодсодержащие тироксины и являются продуктами, выделяемыми в кровь. В тканях организма тироксины претерпевают химические превращения, образующиеся при этом продукты, очевидно, и оказывают свое действие на ферментативные системы, локализующиеся в митохондриях. Было найдено, что тироксин распределяется в клетках следующим образом: в клеточном ядре – 47 мг/%, в митохондриях – 34 мг/%, микросомах – 43мг/% и цитоплазме – 163 мг/%.

Гормоны щитовидной железы являются производными тиронина. В 1927г. Харрингтон и Барджер установили структуру тироксина, который можно считать как производное L – тиронина. Тиронин в организме образуется из аминокислоты L - тирозина. 199

Кроме тироксина, в щитовидной железе и плазме крови имеется другое, родственное ему соединение – трииодтиронин.

Корковый и мозговой слой надпочечников млекопитающих секретируют гормоны, различные как по химической природе, так и по физиологическому действию.

Гормоном мозгового слоя является адреналин. Адреналин – это продукт окисления и декарбоксилирования аминокислоты тирозина. Кроме адреналина, мозговой слой надпочечников вырабатывает также норадреналин, отличающийся от адреналина отсутствием в его молекуле метильной группы:

Адреналин и норадреналин вырабатываются различными клетками мозгового слоя. Биосинтез адреналина начинается с окисления фенилаланина, который превращается в тирозин; тирозин под влиянием фермента ДОФА - оксидазы превращается в 3,4-дегидрооксифенилаланин (ДОФА). Последний декарбоксилируется, и образуется амин, и из него норадреналин. Адреналин возникает уже как продукт метилирования норадреналина.

Третья группа как раз и отвечает за легкомысленную репутацию, которую гормоны приобрели в народе: это стероидные гормоны, которые синтезируются в коре надпочечников и в половых железах. Взглянув на их общую формулу, легко догадаться, что их биосинтетический предшественник — холестерин. Стероиды отличаются по количеству атомов углерода в молекуле: С21 — гормоны коры надпочечников и прогестерон, С19 — мужские половые гормоны (андрогены и тестостерон), С18 — женские половые гормоны (эстрогены). Многие гормоны являются членами семейств со сходной структурой, что отражает процесс молекулярной эволюции. Стероидные гормоны растворяются в жирах и легко проникают через клеточные мембраны. Их рецепторы находятся в цитоплазме или ядре клеток-мишеней.

В настоящее время из коры надпочечников выделено в чистом виде несколько десятков стероидов. Многие из них биологически неактивны, кроме таких, как альдостерол, гидрокортизон, кортизон, кортикостероид, 11- дегидрокортикостерон, 11- дезоксикортикостерон, 17-окси-11-дезоксикортико-стерон и 19- оксикортикостерон и некоторые другие. Стероиды имеют широкое применение в лечебной практике. Многие из них синтезированы и применяются при лечении болезней крови, ревматизма, бронхиальной астмы и др.

В настоящее время считают, что из перечисленных выше кортикостероидов надпочечники в основном секретируют 17- оксикортикостерон, кортикостерон и альдостерон. Все они имеют тетрациклическую структуру циклопентанпергидрофенантрена. Структурная основа такого циклического типа соединения характерна и для многих других соединений типа стероидов (холестерин, желчные кислоты, провитамин Д, половые гормоны). Многие из таких стероидов содержат 21 атом углерода и могут рассматриваться как производные прегнана или его изомера – аллопрегнана.

Стероиды коры надпочечников различаются наличием или отсутствием карбоксильных и гидроксильных групп, а также двойных связей между четвертым и пятым атомами углерода.

Кортизол (гидрокортизон) наиболее активный из естественных глюкопротеидов, регулирует углеводный, белковый и жировой обмен, вызывает распад лимфоидной ткани и торможение синтеза соединительной ткани.

Кортикостерон не содержит гидроксильной группы у семнадцатого атома углерода, и действие его отличается от действия гидрокортизона. Он не обладает антивоспалительным действием, почти не действует на лимфоидную ткань и не эффективен при заболеваниях, при которых с успехом используется гидрокортизон. У различных видов животных секретируется неодинаковое количество этих гормонов.

К стероидным гормонам также относятся половые гормоны. Это стероиды андрогенной (мужские) и эстрогенной (женские) природы.

Из природных андрогенных гормонов наиболее эффективными являются тестостерон и андростерон. Андростерон – это кортикостероид, так как у семнадцатого атома углерода находится кетогруппа. Тестостерон является просто стероидом. Он по своему строению близок к полициклическому углеводороду андростану. Андрогены отличаются от кортикостероидов, содержащих двадцать один атом углерода, отсутствием боковой цепи у семнадцатого атома углерода.

Тестостерон отличается от андростана тем, что имеет двойную связь в положении четыре и пять, кетогруппу в положении три и гидроксильную группу в положении семнадцать. В организме он расщепляется, и в ходе его распада наряду с другими метаболитами образуется андростерон.

Мужские половые гормоны является анаболическими гормонами, они стимулируют синтез и накопление белка в мышцах, наиболее выражено это в молодом возрасте. У андростерона проявляется только половое действие, но нет анаболического.

Андрогены являются синергистами (усиливают действие) некоторых других гормонов (например, кортикостероидов, гормона роста и других). В медицинской практике, животноводстве при импотенции и проявлениях недостаточности мужских половых желез применяется препарат метилтестостерон. Он отличается от тестостерона тем, что содержит метильную группу у семнадцатого атома углерода. Искусственно синтезируемый метилтестостеронв несколько раз активнее природного тестостерона.

Женские половые гормоны, или эстрогены, образуются в фолликулах яичников, в желтом теле и во время беременности в плаценте. Они являются производными эстрана, состоят из восемнадцати атомов углерода и отличаются от циклопентанопергидрофенантрена тем, что содержат только одну метильную группу тринадцатого атома углерода. Свойствами женских половых гормонов - вызывание течки у животных и разрастание слизистой оболочки матки – обладают несколько производных эстрана. Наиболее эффективными из них являются: эстрадиол, эстрон (Фолликул) и эстриол (яичник женщины секретирует примерно 1 мг эстрадиола за сутки).

 

2. Механизм действия  гормонов. Роль циклазной системы в механизме действия гормонов

 

По механизму действия гормоны делят на два основные типа. Первый – это белковые и пептидные гормоны, катехоламины и гормоноиды. Их молекула, подойдя к клетке- мишени, соединяется с молекулами белковых рецепторов наружной плазматической мембраны, затем с помощью медиаторов (ц АМФ, ц ГМФ, простагландинов, Са2+) оказывает влияние на ферментные системы клетки- мишени и на обмен веществ в ней. К гормонам второго типа относят стероидные и часть тиреоидных гормонов. Их молекула легко проникает в глубь клетки- мишени через поры мембраны; взаимодействует с молекулами гликопротеидных рецепторов, локализированных в цитозоле, митохондриях на ядерной мембране, оказывая воздействие на весь клеточный метаболизм, и в первую очередь процессы транскрипции.

Механизмы действия гормонов на клетки-мишени.

В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.

Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют вторыми посредниками. Молекулы гормонов очень разнообразны по форме, а "вторые посредники" - нет.

Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

4. Регуляция секреции  гормонов

 

Гормональная регуляция, регуляция жизнедеятельности организма животных и человека, осуществляемая при участии поступающих в кровь гормонов; одна из систем саморегуляции функций, тесно связанная с нервной и гуморальной системами регуляции и координации функций.

Одним из важнейших биологических процессов является регуляция секреции гормонов, обеспечивающая их образование, выделение из клеток и поступление в циркуляцию в количестве, необходимом для поддержания процессов метаболизма и других функций тканей и органов. Составными частями этой регулирующей системы являются гуморальные факторы, к которым надо отнести продукты метаболизма и гормоны, нейро-гормональные и нервные факторы.

Можно привести ряд примеров влияния продуктов метаболизма на различные этапы секреции гормонов. Так, примером гуморальных регуляций является выделение инсулина из бета-клеток островков поджелудочной железы во внеклеточное пространство и циркуляцию, при повышении уровня гликемии, тимуляторами этой секреции являются также аминокислоты, оординированно с процессом выделения инсулина происходит овышение его биосинтеза. Снижение уровня сахара крови способствует понижению секреции инсулина, повышению секреции и поступлению в циркуляцию его гормональных антагонистов — глюкагона, вырабатываемого альфа-клетками островков поджелудочной железы, гормона роста, гидрокортизона, адреналина и медиатора норадреналина. Это строго координированное взаимодействие ряда гормонов в итоге сложных метаболических процессов обеспечивает сохранение физиологического уровня сахара крови и метаболизма глюкозы.

Информация о работе Гормоны