Генетическое картирование микроорганизмов

Автор работы: Пользователь скрыл имя, 04 Декабря 2014 в 21:09, реферат

Краткое описание

Генетика микроорганизмов составляет основу молекулярной биологии. Наиболее важные проблемы молекулярной генетики изучаются на микроорганизмах. Молекулярная биология обязана своими достижениями успехам генетики бактерий и вирусов. Многие открытия в области генетики микроорганизмов были весьма эффективно использованы в биологии и медицине.

Содержание

Введение.
Генетическое картирование микроорганизмов.
Внехромосомные факторы наследственности: плазмиды, транспозоны, Is – последовательности.
Генетика бактерии и вирусов.
Заключение.
Список литературы.

Прикрепленные файлы: 1 файл

mikro_srs_9.docx

— 222.88 Кб (Скачать документ)

                                                       План

  • Введение.
  • Генетическое картирование микроорганизмов.
  • Внехромосомные факторы наследственности: плазмиды, транспозоны, Is – последовательности.
  • Генетика бактерии и вирусов.
  • Заключение.
  • Список литературы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Генетика микроорганизмов составляет основу молекулярной биологии. Наиболее важные проблемы молекулярной генетики изучаются на микроорганизмах. Молекулярная биология обязана своими достижениями успехам генетики бактерий и вирусов. Многие открытия в области генетики микроорганизмов были весьма эффективно использованы в биологии и медицине.

Генетическое картирование

-составление схем, в к-рых гены расположены в линейном порядке с указанием относительных расстояний между ними.

Методы: комбинационные, рестрикционные, физические, транскрипционные, трансляционные.

 

Применение

экспресс-методы типирования бактерий и оценки риска бактериальной контаминации;

создание вакцин

создание лекарств

 

Внехромосомные факторы наследственности

Внехромосомные факторы наследственности входят в состав многих микроорганизмов, особенно бактерий. Они представлены плазмидами, транспозонами и Is-последовательностями (англ. insertion - вставка, sequence - последовательность), которые являются молекулами ДНК, отличающимися друг от друга молекулярной массой, объемом закодированной в них информации, способностью к автономной репликации и другими признаками.

Плазмиды, транспозоны и Is-последовательности не являются генетическими элементами, жизненно необходимыми для бактериальновой клетки, поскольку они не несут информации о синтезе ферментов, участвующих в пластическом или энергетическом метаболизме. Вместе с тем они могут придавать бактериям определенные селективные преимущества, например резистентность к антибиотикам.

Плазмиды физически либо не связаны с хромосомой (автономное состояние), либо встроены в ее состав (интегрированное состояние). В автономном состоянии они самостоятельно реплицируются. Транспозоны и Is-последовательности во всех случаях связаны с хромосомой и не способны к самостоятельной репликации.

Плазмиды

внехромосомный наследственность плазмид бактерия

Плазмиды несут две функции - регуляторную и кодирующую. Первая состоит в компенсации нарушений метаболизма ДНК клетки хозяина. Например, при интегрировании плаз-виды в состав поврежденного бактериального генома, не способного к репликации его функция восстанавливается за счет плазмидного репликона.

Кодирующая функция плазмид состоит во внесении в бактериальную клетку новой информации, о которой судят по приобретенному признаку, например образованию пилей (F-плазмида), резистентности к антибиотикам (R-плазмида), выделению бактериоцинов (Col-плазмида) и т.д.

Переход плазмиды в автономное состояние и реализация записанной в ней информации часто связаны с индуцирующими воздействиями внешней среды. В некоторых случаях продукты плазмидных генов могут способствовать выживанию несущих их бактерий. Самостоятельная репликация плазмидной ДНК способствует ее сохранению и распространению в потомстве. Встраивание плазмид, так же как и профагов, происходит только в гомологичные участки бактериальной хромосомы, в то время как Is-последовательностей и транс-позонов - в любой ее участок.

В настоящее время описано свыше двух десятков плазмид, из которых будут рассмотрены следующие. F-плазмида, или половой фактор, представляет собой циркуляр-но замкнутую нить ДНК с молекулярной массой 60 * 106. Она контролирует синтез половых ворсинок (sex или F-pili), которые способствуют эффективному спариванию бактерий-доноров с реципиентными клетками при конъюгации. Данная плазмида реплицируется в независимом от хромосомы состоянии и передается при конъюгации в клетки бактерий-реципиентов.

Перенос генетического материала (ДНК) детерминируется tra-опероном F-плазмиды (от англ. transfer - перенос), обеспечивающим ее конъюгативность. F-плазмиду можно удалить (элиминировать) из клетки, обработав последнюю некоторыми веществами, например акридиновым оранжевым, в результате чего клетки теряют свойства донора. Сравнительно легкая элиминация и очень быстрая и эффективная передача F-плазмиды реципиентным клеткам дали основание считать, что она располагается в цитоплазме бактерий вне хромосомы.

Однако F-плазмида может встраиваться в бактериальную хромосому и находиться с ней в интегрированном состоянии. R-плазмиды. Известно большое количество R-плазмид, определяющих устойчивость бактерий-хозяев к разнообразным лекарственным препаратам. Передача R-плазмид от одних бактерий к другим привела к их широкому распространению среди патогенных и условно-патогенных бактерий, что чрезвычайно осложнило химиотерапию вызываемых ими заболеваний.

R-плазмиды имеют сложное молекулярное строение. В их состав входят: r-ген, который может содержать более мелкие мигрирующие элементы - Is-последовательности, транспозоны и tra-опероны. r-ген, ответственный за устойчивость бактерий к какому-либо антибиотику, контролирует синтез фермента, вызывающего его инактивацию или модификацию. Значительное число r-генов является транспозонами, которые могут перемещаться от плазмиды-носителя в другие репликоны. В одном r-гене может содержаться несколько транспозонов, контролирующих устойчивость к разным антибиотикам. Этим объясняется множественная лекарственная резистентность бактерий.

Tra-оперон, обеспечивающий конъюгативность плазмиды, входит в состав R-плазмид грамотрицательных бактерий. Грамположитель-ные бактерии содержат в основном неконъюгативные плазмиды, которые могут передаваться от одной бактерии к другой путем трансакции.

Плазмиды патогенности

Данные плазмиды контролируют вирулентные свойства бактерий и токсинообразование.

Бактериоциногенные плазмиды контролируют синтез особого рода антибактериальных веществ - бактериоцинов, способных вызывать гибель бактерий того же вида или близких видов. Бактериоцины обнаружены у кишечных бактерий (колицины), бактерий чумы (пестицины), холерных вибрионов (вибриоцины), стафилококков (стафилоцины) и др. Наиболее изучены колицины, продуцируемые кишечными палочками, шигеллами и некоторыми другими энте-робактериями.

Колицины энтеробактерий (продуцируемые под контролем колици-ногенных плазмид) представляют собой вещества белковой природы. Известно более 25 типов колицинов, различающихся по своим физико-химическим и антигенным свойствам и по способности адсорбироваться на определенных участках поверхности бактериальных клеток. Сии обозначаются латинскими буквами А, В, С, D, El, Е2, К и т.д.

При обычных условиях культивирования и большинстве клеток бактериальной популяции, содержащей колициногенные особи, синтеза тлицина не происходит. Примерно в одной из 1000 клеток отмечается так называемая спонтанная продукция колицина. Однако количество шлицинпродуцирующих клеток может быть резко увеличено при обработке бактерий УФ-лучами и некоторыми другими агентами. При этом погибают только сами клетки, продуцирующие колицины. В то же время бактериальные клетки, несущие Col-плазмиды, резистентны к действию гомологического колицина так же, как и лизогенные бактерии к действию гомологического фага. Таким образом, характерной чертой Col-плазмид является потенциальная летальность для клеток-продуцентов, которая сближает их с профагами.

Механизм бактерицидного действия колицинов неодинаков. Показано, что после адсорбции на рецепторах наружной мембраны бактерий один из колицинов (ЕЗ) нарушает функцию рибосом, другой (Е2) является ферментом - эндодезоксирибонуклеазой. Имеются колицины, действующие на цитоплазматическую мембрану бактерий. Колициногенные (Col) плазмиды находятся в клетках энтеробактерий в автономном состоянии и передаются при конъюгации без сцепления с хромосомой. Однако некоторые из них (ColV, ColB) могут встраиваться в бактериальную хромосому и находиться в ней в интегрированном состоянии. Они, так же как и F-плазмиды, передаются путем конъюгации в реципиентные клетки, благодаря имеющемуся у них tra-оперону.

Широкое распространение бактериоциногении среди микрофлоры организма человека имеет экологическое значение как один из факторов, влияющих на формирование микробных биоценозов. Вместе с тем колицины, продуцируемые кишечной палочкой - нормальным обитателем кишечника, могут губительно действовать на патогенные энтеробактерий, попавшие в кишечник, способствуя тем самым нормализации его естественного микробиоценоза.

Способность продуцировать различные типы колицинов используется для типирования бактерий с целью эпидемиологического анализа вызываемых ими заболеваний. Такое типирование осуществляется путем определения типа Col-плазмиды (колициногено-типирование) или типа колицина, образуемого патогенными бактериями (колицинотипирование), выделенными от больных, контактирующих с ними лиц, а также из окружающей среды.

Транспозоны

Транспозоны представляют собой нуклеотидные последовательности, включающие от 2000 до 20 500 пар нуклеотидов, которые несут генетическую информацию, необходимую для транспозиции. При включении в бактериальную ДНК они вызывают в ней дупликации, а при перемещении - делеции и инверсии. Транспозоны могут находиться в свободном состоянии в виде кольцевой молекулы, неспособной к репликации. Она реплицируется только в составе бактериальной хромосомы. При этом новые копии транспозонов могут мигрировать в некоторые плазмиды и ДНК фагов, которые, проникая в бактериальные клетки, способствуют их распространению в популяции. Таким образом, важнейшим свойством транспозонов является их способность к перемещению с одного репликона (хромосомная ДНК) на другой (плазмида) и наоборот. Кроме того, некоторые транспозоны, так же как и плазмиды, выполняют регуляторную и кодирующую функции. В частности, они могут нести информацию для синтеза бактериальных токсинов, а также ферментов разрушающих или модифицирующих антибиотики.

Транспозоны имеют особые концевые структуры нескольких типов, которые являются маркерами, позволяющими отличать их от других фрагментов ДНК. Это позволило обнаружить их не только у бактерий и дрожжей, но и в клетках растений, насекомых, позвоночных животных и человека. При интеграции транспозонов в хромосому клеток животных или человека они приобретают удивительное сходство с про-вирусами, находящимися в составе их хромосом.

 

 

Is-последовательности

Is-последовательности (англ. insertion - вставка, sequence - последовательность) представляют собой транспозируемые элементы, которые также называются «вставки последовательностей оснований». Это фрагменты ДНК длиной 1000 пар нуклеотидов и более. В Is-последовательностях содержится информация, необходимая только для их транспозиции, т.е. перемещения в различные участки ДНК.

Вследствие такого рода перемещений Is-последовательности могут выполнять ряд функций.

Координировать взаимодействие транспозонов, плазмид и умеренных фагов как между собой, так и с хромосомой бактериальной клетки и обеспечивать их рекомбинацию.

Вызывать инактивацию гена, в которой произошла интеграция Ь-последовательности («выключение» гена), либо, будучи встроенными в определенном положении в бактериальную хромосому, служить промотором (участками ДНК, регулирующих экспрессию под лежащих структурных генов бактерий-реципиентов), который включает или выключает транскрипцию соответствующих генов, выполняя регуляторную функцию.

Индуцировать мутации типа делеций или инверсий при перемещении и дупликации в 5-9 парах нуклеотидов при включении в бактериальную хромосому.

Умеренные и дефектные фаги

Факторами изменчивости бактерий могут быть умеренные или дефектные фаги, которые напоминают по своим свойствам плазмиды бактерий. Встраиваясь в хромосому, эти фаги вызывают лизогенизацию бактерий, которые могут приобретать новые признаки. Изменчивость лизогенных бактерий связана либо с приобретением генов, переносимых данными фагами от их предыдущих хозяев (бактерий-доноров), либо с экспрессией «молчащих» генов бактерий-реципиентов. В последнем случае фаговая ДНК, встраиваясь вблизи поврежденного промотора, заменяет его. При этом синтезируются определенные продукты, например протоксины дифтерийных бактерий, ряда клостридий и др.

 

 

 

 

 

 

Заключение

На основе всего изложенного я пришла к выводу, что изучение генетики микроорганизмов актуально для современного врача.

Геномика микроорганизмов имеет прямое отношение к клинической медицине. Закономерности геномной организации патогенных бактерий и вирусов позволяют более точно понять природу инфекционного процесса, определить направление создания вакцин, уточнить патогенные мишени микроорганизмов для создания лекарств.

Не зная локализацию того или иного гена в хромосоме бактерии врач не сможет идентифицировать ту или иную бактерию, различить признаки характерные для разных форм вирусов. Поэтому важно знать генетику микроорганизмов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список  литературы

  1. Микробиология. К.Д. Пяткин, Ю.С.Кривошеин. М., «Медицина», 1980, 512 с., ил.
  2. Микробиология: Учебник., Тимаков В.Д., Левашев В.С., Борисов Л.Б. – М.: Медицина, 1983, 512 с., ил.
  3. Медицинская микробиология : учебное пособие / под ред. В.И. Покровского. – М.: ГОЭТАР-Медиа, 2010. – 768 с. : ил.
  4. www.google.ru
  5. www.mail.ru
  6. www.rambler.ru

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Операция поиска # 3

[17:18:37]   Ya   Найдено 1% совпадений по адресу: http://turboreferat.ru/microbiology/101192-524249-page1.html

[17:18:42]   Go   Найдено 1% совпадений по адресу: http://referat.ru/referats/view/26023

 

[17:19:48]   Уникальность текста 92%

 

 

 


Информация о работе Генетическое картирование микроорганизмов