Физиология сердца

Автор работы: Пользователь скрыл имя, 25 Мая 2012 в 23:40, лекция

Краткое описание

Автоматия сердца – это его способность к ритмическому сокращению без всяких видимых раздражений под влиянием импульсов, возникающих в самом органе. Автоматия сердечной мышцы бывает миогенной – когда импульсы появляются в самих мышечных волокнах, и нейрогенной – когда импульсы возникают в клетках нервных ганглиев. Миогенная автоматия обеспечивает сокращения сердца на ранних стадиях эмбрионального развития, а также некоторое время (несколько часов и даже суток) после перерезки всех идущих к сердцу нервов.

Содержание

1. Автоматия сердца.
2. Возбудимость сердца.
3. Сократимость сердца.
4. Гемодинамическая функция сердца.
5. Регуляция сердечной деятельности.

Прикрепленные файлы: 1 файл

6. Физиология сердца.doc

— 105.50 Кб (Скачать документ)
· I тон образуется при сильном и быстром сокращении желудочков, в процессе которого давление в полости желудочков резко увеличивается, что приводит к закрытию и дальнейшему прогибанию клапанов в сторону предсердий до тех пор, пока сухожильные хорды клапанов внезапно не остановят это прогибание. Эластическая упругость сухожильных хорд и клапанов создаёт обратную ударную волну крови, направленную соответственно в каждый желудочек. Это приводит кровь, стенку желудочков, упругие клапаны в состояние вибрации и порождает вибрирующую турбулентность крови. Вибрация через прилежащие ткани достигает стенки грудной клетки и воспринимается в виде звука, слышимого с помощью стетофонендоскопа.
· II тон — результат быстрого закрытия полулунных клапанов. В момент закрытия они прогибаются в направлении полости желудочков. Их эластическая отдача толкает кровь в артерии, вызывая короткий период реверберации крови между стенкой артерий и полулунными клапанами. Вибрация стенки артерий передаётся вдоль артерий. Вибрация сосудов или желудочка, достигающая стенки грудной клетки, воспринимается в виде звука.
Продолжительность I тона составляет 0,14 с, II — 0,11 с. II тон сердца имеет более высокую частоту, чем I. Помимо I и II тонов, иногда можно выслушать дополнительные тоны сердца — III и IV, в подавляющем большинстве случаев отражающие наличие сердечной патологии.

      5.3. Гемодинамические показатели

      Циркуляцию  крови по сердечно-сосудистой системе обеспечивает насосная функция сердца. Сердце сокращается в течение жизни человека до 4 млрд. раз, выбрасывая в аорту и способствуя поступлению в органы и ткани до 200 млн л крови. В физиологических условиях сердечный выброс составляет от 3 до 30 л/мин. При этом кровоток в различных органах (в зависимости от напряженности их функционирования) варьирует, увеличиваясь приблизительно вдвое.

      При каждом сокращении желудочков в аорту  и легочный ствол выталкивается  кровь, заполнившая желудочки во время их диастолы, так называемый ударный, или систолический, объем (СО). У человека в состоянии покоя СО равен 50—70 мл, во время мышечной работы он возрастает до 150—180 мл за счет усиления мощности сокращения сердечной мышцы.

      Минутным  объемом крови  (МОК) называется количество крови, выбрасываемое одним желудочком за 1 мин, МОК равен СО, умноженному на число сокращений сердца (ЧСС) в 1 мин. Например, если СО равен 60 мл, а ЧСС в 1 мин равно 72, то МОК составит 60-72=4,32 л. У разных людей МОК колеблется от 3 до 5 л. При напряженной физической работе сердце здорового тренированного человека может выбросить за 1 мин в аорту до 25—30 л крови. Такой высокий МОК достигается как за счет увеличения СО, так и за счет возрастания ЧСС в 1 мин. 

      6. Регуляция сердечной деятельности.

      Регуляция сердечной деятельности подчинена  интересам целого организма в каждый определенный момент времени. Для удобства анализа конкретных физиологических механизмов включения сердца в ту или иную деятельность целого организма выделяют несколько видов регуляции.

      6.1. Внутрисердечные  механизмы регуляции. К ним относят внутриклеточные механизмы, регуляцию межклеточных взаимодействий и собственно внутрисердечные нервные механизмы.

      6.1.1. Внутриклеточная регуляция. Имеет в своей основе гетерометрический и гомеометрический механизмы.

      Гетерометрический механизм основан на гемодинамических процессах, связанных с изменением длины кардиомиоцитов. В основе гемодинамической регуляции силы сердечных сокращений лежит закон Франка—Старлинга: чем больше крови притекает к сердцу во время диастолы, тем сильнее растягиваются волокна сердечной мышцы и тем сильнее оно сокращается при следующей систоле. Механизм этого явления объясняют двумя причинами:

      ▲ сократительный кардиомиоцит состоит  из двух элементов — собственно сократительного и эластического. Сократительный элемент в возбужденном состоянии способен сокращаться, а последовательно соединенный с ним эластический элемент действует как обычная пружина.

      ▲ во время диастолы увеличивается площадь контакта между митохондриями и миофибриллами, вследствие чего возрастают интенсивность диффузии АТФ из митохондрий в миофибриллы и энергетическое обеспечение сократительного аппарата.

      В целостном организме действие закона сердца ограничено рядом других условий.

      Гомеометрический  (метаболический) механизм не связан с изменением длины саркомера и основан на непосредственном действии биологически активных веществ. Метаболическая регуляция заключается в способности кардиомиоцитов при выполнении ими специфической сократительной функции синтезировать различные белки в соответствии с уровнем их разрушения. Особенность кардиомиоцитов заключается в цикличности их обменных процессов, связанных с ритмом сердечной деятельности. Наиболее быстрый распад АТФ и гликогена происходит в момент систолы, ресинтез и восстановление уровня этих веществ успевает полностью восстановиться за время диастолы. Поэтому в чрезвычайных условиях при усиленной работе сердца одним из компенсаторных механизмов, адаптирующих деятельность сердца к воздействиям, является удлинение фазы диастолы.

      Кардиомиоциты способны также адсорбировать из циркулирующей крови различные  БАВ, Так, адсорбированные из крови  катехоламины (адреналин и норадреналин) увеличивают вход Са2+ в клетку в момент развития потенциала действия, вызывая тем самым усиление сердечных сокращений.

      Существует также явление, получившее название феномен Анрепа: при повышении давления в аорте или легочном стволе сила сердечных сокращений автоматически возрастает, обеспечивая тем самым возможность выброса того же объема крови, что и при исходной величине артериального давления, т.е. чем больше противонагрузка, тем больше сила сокращений. Механизмы, лежащие в основе феномена Анрепа, до сих пор не раскрыты. Предполагают, что с увеличением противонагрузки растет концентрация Са2+ в межфибриллярном пространстве и поэтому возрастает сила сердечных сокращений.

      Другим  проявлением гомеометрической регуляции  является лестница Боудича. Раздражая электрическим током полоску сердца лягушки, утратившую способность к автоматизму, автор обнаружил, что каждое последующее сокращение в ответ на стимулы одной амплитуды выше по амплитуде предыдущего — и так до некоторого предела (внешне это напоминало лестницу). В настоящее время установлено, что чем чаще сердце сокращается, тем (до определенного предела) выше сила его сокращений и наоборот. В основе этого явления лежит повышение уровня Са2+ в межфибриллярном пространстве при увеличении частоты сокращений — он не успевает полностью «откачиваться» из наружной среды, а уже появляется новый поток Са2+ из эндоплазматической сети, что и создает более высокий фон Са2+, чем при редком ритме сокращений сердца.

      6.1.2. Межклеточная регуляция.

      Связана с работой нексусов, обеспечивающих транспорт необходимы веществ, соединение миофибрилл, переход возбуждения с клетки на клетку. Межклеточная регуляция включает также взаимодействие кардиомиоцитов с соединительнотканными клетками, составляющими строму сердечной мышцы и источник пополнения необходимых органических соединений.

      6.1.3. Рефлекторная внутрисердечная  регуляция. 

      Осуществляется  интракардиальными периферическими  рефлексами. Интракардиальные рефлекторные дуги включают афферентные интрамуральные нейроны Догеля II типа, дендриты которых образуют рецепторы растяжения миокарда и коронарных сосудов, а также эфферентные нейроны, аксоны которых иннервируют миокард и гладкую мускулатуру коронарных сосудов (рис. ).

      Скопления тел эфферентных нейронов представляют собой интрамуральные сердечные ганглии, их составляют не только холинергические, но и адренергические клетки, причем последние обладают большей возбудимостью по сравнению с холинергическими. Эффекты раздражения эфферентных интрамуральных нейронов могут быть противоположными в зависимости от степени кровенаполнения сердца.   При слабом кровенаполнении афферентация от рецепторов сердца ведет к возбуждению адренергических нейронов, а выделяемый ими медиатop норадреналин оказывает стимулирующее влияние на сердце. При чрезмерном наполнении камер сердца кровью и интенсивном раздражении рецепторов возбуждаются холинергические эфферентные нейроны, оказывая тормозные эффекты на сердце.

      Внутрисердечные рефлекторные дуги — часть метасимпатической нервной системы. Эфферентные нейроны являются также общими с дугой классического парасимпатического рефлекса.

      6.2. Внесердечная регуляция

      Внесердечная  нервная регуляция сердечной  деятельности осуществляется нервным и гуморальным путем.

      Нервная регуляция осуществляется по рефлекторному  механизму, где можно выделить рецепторы, нервные центры и эффекторы.

      Рецепторные образования расположены в рефлексогенных зонах кровеносных сосудов: дуге аорты, сонном синусе, верхней полой вене и правом предсердии. Кроме того, рефлекторные влияния на работу сердца осуществляются с механорецепторов, расположенных в брыжейке, кишечнике, желудке.

      Торможение  сердечной деятельности рефлекторным путем  иллюстрирует опыт Гольтца: при поколачивании по брюшку лягушки наблюдается замедление сердечного ритма. В данном случае раздражение рецепторов брюшной полости рефлекторно повышает тонус ядер блуждающих нервов деятельность сердца угнетается. У человека подобная обратимая остановка сердца возникает при сильном ударе в живот.

      К вагусным рефлексам  относят и глазосердечный рефлекс, заключающийся в том, что при надавливании на глазные яблоки происходит замедление пульса на 4-8 уд/мин и снижение артериального давления.

      Другим  примером рефлекторного  влияния на деятельность сердца служит  рефлекс  с рецепторов устья  полых вен (рефлекс Бейнбриджа), который играет важную роль в регуляции сердечной деятельности. Он состоит в том, что повышение давления крови в полых венах приводит к раздражению барорецепторов, расположенных непосредственно в стенке полых вен при их впадении в предсердие. Возбуждение от этих рецепторов по афферентным волокнам поступает в спинной мозг и далее к сосудодвигательному центру продолговатого мозга, снижая тонус ядер блуждающего нерва и повышая тонус симпатического отдела нервной системы. Частота и сила сердечных сокращений при этом возрастают, что приводит в конечном итоге к усилению притока крови в артериальное русло и снижению давления — в венозном.

      Существуют  рефлекторные влияния и с других рецепторов организма человека. Всякого  рода болевые, температурные, световые и другие раздражители в той или иной степени изменяют сердечную деятельность.

      Нервные центры и эффекторы внесердечной нервной регуляции принадлежат автономной нервной системе.

      За  счет нервных влияний осуществляются:

      •  урежение или учащение сердечных  сокращений (отрицатльный и положительный  хронотропный эффект);

      •  повышение или понижение возбудимости сердечной мышцы (батмотропный эффект);

      •  ослабление или усиление силы сокращений (инотропный эффект);

      •  ухудшение или улучшение проводимости (дромотропный эффект);

      •  изменение тонуса сердечной мышцы (тонотропный эффект).

      Парасимпатическая иннервация представлена ветвями блуждающих нервов, отходящими от общих стволов этих нервов в верхней части грудной полости. Преганглионарные волокна заканчиваются на интрамуральных ганглиях. Если на шее животного перерезать один блуждающий нерв, а его периферический конец, идущий к сердцу, раздражать электрическим током, то при слабом раздражении возникает урежение сокращений сердца и ослабевает их сила. Если раздражение усилить, может произойти полная остановка сердца во время диастолы желудочков. Действие ацетилхолина в первую очередь основано на повышении мембранной проницаемости для иона К+, что вызывает гиперполяризацию. В то же время еще в 30-е годы XX в. В. Кеннон установил, что при слабом раздражении блуждающего нерва может наблюдаться усиление сердечной деятельности. В настоящее время в интрамуральных ганглиях наряду с холинергическими обнаружены адренергические  нейроны,  которые  и  обеспечивают сердечную деятельность и иннервируют главным образом предсердия.

      Эффекты парасимпатической иннервации: сила сокращений предсердий уменьшается — отрицательный инотропный эффект, ЧСС снижается — отрицательный хронотропный эффект, предсердно-желудочковая задержка проведения увеличивается — отрицательный дромотропный эффект.

      Симпатическая иннервация. Ветви симпатических нервов берут начало от грудного отдела спинного мозга и прерываются в верхнем, среднем шейных и звездчатых ганглиях. Постганглионарные волокна иннервируют весь миокард, но в основном предсердия. Л. Цион и И.П. Павлов обнаружили, что раздражение симпатических нервов оказывает влияние, противоположное действию блуждающих нервов: увеличиваются частота и сила сердечных сокращений, улучшается проводимость и повышается возбудимость.

Информация о работе Физиология сердца