Автор работы: Пользователь скрыл имя, 12 Ноября 2014 в 15:25, реферат
В течение следующих 15-20 лет аппаратура значительно совершенствуется, создаются устройства «серой шкалы», дающие изображения с большим количеством деталей и тонкими градациями структуры, разрабатываются первые модели аппаратов быстрого сканирования (в реальном масштабе времени). Постепенно формируется облик современного ультразвукового диагностического аппарата, оснащенного большим количеством сменных датчиков, имеющего встроенные блоки для измерений, расчетов различных биологических параметров и, наконец, систему компьютерной обработки изображения.
Введение
Физические основы ультразвука
Сфера применения УЗИ
Заключение
Список литературы
Основной элемент датчика представляет собой тонкую пластину из материала, обладающего пьезоэлектрическими свойствами. В настоящее время материалом для этого служат не природные (кварц), а полученные искусственным путем материалы (титанаты свинца, бария и др.). При подведении к граням такой пластинки разности потенциалов происходит ее деформация — расширение или сжатие в зависимости от полярности электрического заряда. Это явление известно как обратный пьезоэффект.
Частота колебаний пластины зависит от свойств материала, из которого она сделана, ее толщины и т.п. Чем тоньше пьезоэлемент, тем выше его резонансная частота.
Для частот 10-15 МГц толщина пластины составляет всего несколько микрон (мкм). Время, в течение которого на пластину подается напряжение, измеряется миллионными долями секунды и лишь в течение этого времени пьезоэлемент является передающей антенной -излучает ультразвуковые колебания вглубь тканей. Созданная разность электрических потенциалов вызывает колебания пластинки из пьезоматериала, что служит источником ультразвуковой волны. Отразившаяся часть энергии волны вызывает деформацию пластины и появление электрических зарядов на ее гранях.
Часть энергии ультразвуковой волны отражается, проходя через границы тканей, имеющих различные акустические свойства и возвращается к пьезоэлементу, который в это время находится в состоянии покоя. Отраженная ультразвуковая волна вызывает компрессию пьезопластины и появление на ее гранях разности электрических потенциалов по принципу прямого пьезоэффекта. Пьезоэлемент датчика в это время работает как приемная антенна, а появившийся на пластине электрический заряд и является основной единицей построения изображения на экране.
Наиболее часто используются следующие термины: ультразвуковое исследование, ультразвуковая диагностика, ультразвуковое сканирование, эхография, эхотомография, сонография, ультрасонография и распространенные сокращения — УЗИ (ультразвуковое исследование) и УЗД (ультразвуковая диагностика).
Из перечисленных терминов предпочтительными являются эхотомография, сонография и ультрасонография, так как первый из них описывает и метод исследования и тип получаемого изображения, а второй и третий традиционно используются в зарубежной литературе.
Основные методы эхолокации, применяемые в медицине
В настоящее время такие названия метода, как двумерное и одномерное ультразвуковое исследование чаще заменяются сокращенными названиями А и В-метод. Применение терминов, которые имеют в своем составе слова «сканирование» или «томография» допустимо лишь для описания исследования двумерным (В) методом.
При использовании других режимов их наименование фигурирует в описании исследования, например: ультразвуковая допплерография, цветное допплеровское картирование, или после названия «сонография», "ультразвуковое исследование" и др. указывается метод его проведения.
Существуют два принципиальных варианта получения информации о внутренней структуре объекта с помощью ультразвука. Ведущим в настоящее время является метод эхолокации, который заключается в приеме отраженных по мере прохождения луча сигналов, их обработке в аппарате и выводе графической или структурной информации на экран.
Принцип эхолокации реализуется на практике различными методами, среди которых практически наиболее используемыми являются: А, В, D и их разновидности.
А-метод получил название от начальной буквы английского слова amplitude (амплитуда). Отраженные сигналы воспроизводятся в виде пиков на горизонтальной оси экрана аппарата. Чем более смещено вправо изображения этого пика, тем дальше от датчика расположена зона отражения ультразвукового сигнала. Зная скорость распространения ультразвуковой волны в тканях тела человека, можно определить расстояние до этой зоны, разделив пополам (так как ультразвуковой луч проходит этот путь дважды) произведение времени возврата импульса на скорость ультразвука.
Значение амплитуды на экране аппарата характеризует (качественно, а не количественно, так как невозможно учесть все потери энергии импульса на пути до зоны отражения и обратно) разницу в акустической плотности тканей. Тем не менее, амплитуда отраженного сигнала позволяет, в определенной мере, сделать заключение о характере препятствия на трассе ультразвукового луча. Несмотря на то, что аппарат, работающий в одномерном режиме, устроен относительно просто, а количество информации, получаемой с его помощью, ограничено, устройства этого типа и в настоящее время успешно применяются в некоторых областях медицины. Датчик аппарата, работающего в одномерном режиме, чаще всего имеет цилиндрическую форму (в виде толстого карандаша). В торце его рабочей поверхности расположен один неподвижный пьезоэлемент.
М-метод (развертка одномерного изображения во времени). Название этого метода (М) является сокращением английского слова motion (движение). Иногда метод называется ТМ time-motion (время-движение). Он был предложен и нашел наибольшее применение в кардиологической практике, так как предназначен для исследования движущихся структур. Суть метода легко понять, представив себе, как ультразвуковой луч из датчика одномерного аппарата проходит через сердце. В этом случае на экране аппарата можно наблюдать перемещение амплитуд сигналов, отраженных от стенок камер и клапанов работающего сердца вправо-влево в зависимости от фазы его сокращения. Однако, измерять смещения этих амплитуд (т.е. определять величины колебаний) практически невозможно, так как изображение находится в постоянном движении.
В М-режиме изображение на экране повернуто на 90° градусов по отношению к тому, как воспроизводится А-методом. На экране оно более соответствует нормальным пространственным соотношениям: отраженные сигналы откладывается не на горизонтальной, а на вертикальной оси, причем, амплитуда изображается не пиком сигнала, а яркостью свечения точки в месте его отражения.
В настоящее время абсолютное большинство ультразвуковых исследований производятся аппаратами, работающими в режиме В-метода, название которого происходит от слова brightness (яркость). Этот метод называется также эхотомографией, методом двумерного ультразвукового исследования, или ультразвуковым сканированием и является наиболее информативным и употребительным практически во всех областях медицины. Перемещение ультразвукового луча может производиться поочередным включением пьезоэлементов датчика.
Для регистрации и измерения параметров работы сердца обычно используют двойной режим работы аппарата (В+М) Справа на экране эхотомограмма сердца с изображением на ней пунктирной линией оси, по направлению которой в левой части экрана воспроизводится развертка одномерного сигнала во времени. Такой метод сканирования называется электронным сканированием. Датчик представляет собой ряд последовательно расположенных пьезоэлементов. Каждый из них (как при работе в А-режиме) воспроизводит изображение в виде точек, расположение которых на экране соответствует расстоянию до зоны отражения, а яркость — амплитуде отраженного сигнала.
Чем больше отдельных элементов будет содержать датчик и чем меньший размер будет иметь каждый элемент — тем качественнее будет изображение на экране. Таким образом, двумерное изображение получается в результате сканирования, то есть перемещения пучка ультразвуковой энергии в одной плоскости, которая называется плоскостью сканирования.
Сканирование ультразвукового луча может быть осуществлено и механически. В этом случае датчик обычно имеет один пьезоэлемент, который приводится в движение микромотором. Способ сканирования называется в этом случае механическим.
В настоящее время редко, но все же встречаются аппараты, в которых датчик перемещается рукой. Этот вариант получения двумерного изображения носит название сложного ручного или компаундного сканирования. Чтобы его осуществить, необходимо специальное устройство, которое в процессе сканирования обеспечивает перемещение датчика строго в одной плоскости. Любые изменения положения датчика в пределах этой плоскости не ограничиваются. Датчик аппарата сложного ручного сканирования устроен точно так же, как в одномерном аппарате, то есть в его корпусе имеется один неподвижный пьезоэлемент.
Для получения эхотомограммы методом ручного сканирования отраженные сигналы принимаются и фиксируются в специальном запоминающем устройстве, где формируется статическое, «застывшее» изображение, которое «рисуется» на экране по мере перемещения датчика по поверхности тела. Такое медленное сканирование не позволяет видеть перемещения объекта. При исследовании движущихся объектов этим методом можно получить значительные искажения его формы и размеров.
С-метод (фронтальное сканирование). Этот метод заключается в получении двумерного изображения при перемещении пьезоэлемента в плоскости, поперечной его поступательному движению (в прямоугольной системе координат). Система формирования изображения такого аппарата обрабатывает только сигналы, отраженные на одной задаваемой для каждого томографического среза глубине. Датчик имеет свободу перемещения вперед-назад, вверх-вниз с возможностью наклона луча под разными углами но только в пределах выбранной плоскости сканирования, которая не может быть изменена в процессе появления изображения на экране. После проведения каждого томографического среза, эта плоскость изменяется на другую перемещением устройства подвески датчика. Изображение возникает при перемещении датчика по коже исследуемой области и в процессе исследования автоматически замораживается. Преимуществом метода является возможность получать на экране целиком томографические срезы больших площадей. К недостаткам относится трудоемкость и продолжительность исследования. Широкого практического применения подобные аппараты не получили.
D-метод (ультразвуковая допплерография). Метод ультразвуковой допплерографии основан на эффекте, открытом австрийским физиком К.Доплером в 1842 г. Суть этого эффекта, проявляющегося для волновых колебаний любой природы, состоит в изменении длины волны при ее отражении от движущейся преграды. Отражение от препятствия, приближающегося к источнику сигнала, вызывает увеличение частоты исходного колебания, при удалении — приводит к понижению частоты. Измерение частотного сдвига позволяет определить скорость и направление смещения движущихся структур.
Суть метода состоит в том, что отраженные сигналы проходят цифровую обработку и, в зависимости от направления доплеровского сдвига на выбранном и отмеченном участке обычного двумерного изображения показывается цветом направление движения перемещающихся структур. Обычно смещение по направлению к датчику кодируется красным, отдатчика — синим цветом (артериальный и венозный потоки крови). Области турбулентного движения маркируются желтым или зеленым цветом, а отсутствие перемещения крови — глубоким черным цветом. С помощью цветного доплеровского картирования можно видеть кровообращение на уровне мелких артериальных и венозных сосудов и фиксировать даже незначительные препятствия кровотоку (сужения сосудов, атеросклеротические бляшки и др.).
Ультразвуковая диагностическая аппаратура
Виды и типы ультразвуковых диагностических устройств
В современной клинической практике широко применяются многие виды и типы ультразвуковых диагностических устройств. Имеется множество аппаратов, специально разработанных и предназначенных для различных разделов медицины.При этом неверно считать их устаревшими или несовершенными. Они специально и наилучшим образом приспособлены для конкретных исследований
С практической точки зрения, ультразвуковые аппараты могут быть разделены в зависимости от области применения на аппараты общего назначения, универсальные аппараты, аппараты специального назначения.
Аппараты общего назначения - относительно недорогие и несложные в работе. С их помощью производится осмотр органов брюшной полости, забрюшинного пространства и малого таза. Дополнительные датчики позволяют исследовать щитовидную, молочные железы, мягкие ткани. Эти аппараты могут применяться также в акушерской, педиатрической и неонатологической клиниках.
Универсальные аппараты — имеют все перечисленные возможности аппаратов общего назначения и, кроме того, ряд дополнительных.
Специальные датчики к этим аппаратам делают их по-настоящему многофункциональными и универсальными: например, дают возможность осмотра предстательной железы трансректальным доступом, исследования в операционной ране; применения в офтальмологии, производства прицельной тонкоигольной биопсии. Наличие в таком аппарате доплеровского блока позволяет проводить осмотр сердца и сосудов с оценкой их функций и т.п.
Датчик (передатчик, преобразователь) преобразует одну форму энергии в другую. Ультразвуковые датчики преобразуют электричество и волны давления. В настоящее время это может быть выполнено с помощью пьезоэлектрического кристалла (пьезо означает «давление»). В будущем, вероятно, будет возможно прямое преобразование.
Фазовый датчик (датчик для конвергентного сканирования) имеет набор кристаллов, которые могут возбуждаться сериями. Некоторые фазовые датчики могут поворачиваться с использованием возможностей электроники, испуская волну, проникающую в ткани под углом.
В эхокардиографии мы имеем дело с преобразованием электрической энергии в механическую и наоборот. В датчике это преобразование осуществляется специальным кристаллом — пьезоэлектрическим элементом. Пьезоэлектрический элемент изменяет свои размеры под воздействием электрического тока и, напротив, порождает электрический ток под действием приложенного к нему давления, например, со стороны ультразвуковых волн. Таким образом, пьезоэлектрический кристалл может посылать и принимать ультразвуковые волны. В датчике пьезоэлектрический элемент находится между двумя электродами (плюс и минус). Проходящий через элемент электрический ток заставляет его то расширяться, то сжиматься и тем самым генерировать ультразвуковые волны. С другой стороны, приходящие ультразвуковые волны элемент преобразует в электрические импульсы, регистрируемые катодным осциллографом. Оптимальная длина пьезоэлектрического элемента равна 1/2 длины волны. В этом случае элемент колеблется с резонансной частотой. Колебания пьезоэлектрического элемента распространяются по всем направлениям, в том числе в направлении корпуса датчика. Чтобы исключить волны, отраженные от корпуса датчика, корпус выстилают поглощающим материалом.Генерированный ультразвуковым датчиком сигнал распространяется на некоторое расстояние, называемое ближней зоной, в виде пучка параллельных волн, которые затем расходятся в так называемой дальней зоне.
Информация о работе Физические основы ультразвука. Сфера применения УЗИ