Автор работы: Пользователь скрыл имя, 15 Октября 2013 в 17:46, реферат
Актуальность этой темы заключается в том, что в настоящее время не осталось болезней, знания о которых не базировались бы на морфологическом изучении клеток — структурных единиц живых организмов. Повреждение отдельных ультраструктур и даже гибель отдельных клеток, из которых построены различные ткани и органы человека, может быть проявлением «физиологической нормы». Это постоянный, “запрограммированный” процесс гибели клеток в организме, обозначаемый апоптозом, имеет очень важное значение не только для нормального существования организма, но и играет одну из ключевых ролей при многих общепатологических процессах.
Актуальность темы.
1. Цитология.
1.1 Цитология-история открытий.
1.2 Виды и направления цитологии.
1.3 Цитологические исследования.
2. Реакция клеток на повреждающие воздействия.
2.1 МОРФОЛОГИЯ ПОВРЕЖДЕНИЯ
2.2 ПРИЧИНЫ ПОВРЕЖДЕНИЯ КЛЕТОК
2.3 МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК
2.4 ОСНОВНЫЕ ФОРМЫ ПОВРЕЖДЕНИЯ КЛЕТОК
2.5 СУБКЛЕТОЧНЫЕ ИЗМЕНЕНИЯ ПРИ ПОВРЕЖДЕНИИ КЛЕТОК
3. Старение и смерть клетки.
3.1 СТАРЕНИЕ КЛЕТКИ
3.2 Пограничные состояния между жизнью и смертью.
3.3 Смерть клетки
Заключение.
Список литературы.
Реакция клеток на повреждающие воздействия зависит от типа, продолжительности действия и тяжести повреждающего фактора. Например, малые дозы токсинов или непродолжительная ишемия могут вызвать обратимые изменения, тогда как большие дозы того же токсина и продолжительная ишемия способны привести к немедленной гибели клетки или медленному необратимому повреждению, вызывающему клеточную смерть. Тип, состояние и приспособляемость клетки также определяют последствия ее повреждения. Для ответа клетки на повреждение важны ее гормональный статус, характер питания и метаболические потребности.
Механизмы действия многих повреждающих агентов хорошо известны. Так, многие токсины вызывают повреждение клеток, воздействуя на эндогенные субстраты или ферменты. Особенно чувствительны к действию токсинов гликолиз, цикл лимонной кислоты и окислительное фосфорилирование на внутренних мембранах митохондрий. Например, цианид инактивирует цито-хромоксидазу, а флуороацетат препятствует реализации цикла лимонной кислоты, что в результате приводит к недостаточности АТФ. Некоторые анаэробные бактерии, например Clostridium perfringens, высвобождают фосфолипиды, которые атакуют фос-фолипиды клеточных мембран, повреждая их.
Наиболее важными для развития повреждения и смерти клетки считают следующие четыре механизма.
кальция в клетке ведет к активации ряда ферментов, повреждающих клетку: фосфолипаз (повреждение клеточной мембраны), протеаз (разрушение мембраны и белков цитоскелета), АТФаз (истощение запасов АТФ) и эндонуклеаз (фрагментация хроматина).
ОСНОВНЫЕ ФОРМЫ ПОВРЕЖДЕНИЯ
Различают три формы повреждения клеток: 1) ишемическое и гипоксическое повреждение; 2) повреждение, вызванное свободными радикалами, включая активированный кислород; 3) токсическое повреждение.
1. Ишемическое и гипоксическое повреждение. Чаще всего оно обусловлено окклюзией артерий. При этом изначально гипоксия воздействует на аэробное дыхание клетки — окислительное фосфорилирование в митохондриях. В связи с тем что напряжение кислорода в клетке снижается, прекращается окислительное фосфорилирование, а образование АТФ уменьшается или останавливается.
Исчезновение АТФ ведет к быстрому набуханию (отеку) клетки — одному из ранних проявлений ишемического повреждения. Отек клетки обусловлен нарушением регуляции объема клетки плазматической мембраной. Баланс между содержимым клетки и окружающей ее средой обеспечивается энергетически зависимым натриевым насосом, который поддерживает концентрацию калия внутри клетки значительно более высокой, чем внеклеточная. Наблюдается отделение рибосом от мембран гранулярной эндоплазматической сети и диссоциация полисом в моносомы. На поверхности клеток могут образовываться "волдыри", а клетки, имеющие на поверхности микроворсинки, их утрачивают (эпителий проксимальных канальцев почек). В цитоплазме и вне клеток появляются "миелиновые фигуры", образующиеся из цитоплазмы и мембран органелл. Митохондрии набухают, а эн-доплазматическая сеть остается расширенной.
Необратимые изменения морфологически ассоциируются с выраженной вакуолизацией митохондрий, повреждением плазматических мембран и набуханием лизосом. Вслед за гибелью клетки ее компоненты прогрессивно разрушаются, и происходит выброс ферментов клетки во внеклеточное пространство. Умершие клетки образуют массы, состоящие из фосфолипидов в виде "миелиновых фигур", которые подвергаются фагоцитозу и разрушаются до жирных кислот.
Проникновение ферментов сквозь поврежденную клеточную мембрану, а затем в сыворотку крови позволяет клинически определять параметры смерти клетки. Например, сердечная мышца содержит трансаминазы, лактатдегидрогеназу и креатинкина-зу. Повышение содержания этих ферментов в сыворотке крови является клиническим критерием инфаркта миокарда (смерти кардиомиоцитов).
■ Таким образом, основными признаками необратимости повреждения клетки служат невосстановимые повреждения митохондрий, приводящие к потере АТФ, а также развитие глубоких повреждений плазматических мембран, в основе которых лежит ряд биохимических механизмов.
Во-первых, в некоторых ишемизированных тканях, например печени, необратимое ишемическое повреждение сопровождается заметным уменьшением содержания фосфолипидов в клеточной мембране, которое происходит под действием кальцийзависимых фосфолипаз.
Во-вторых, активация протеаз, обусловленная повышением концентрации кальция в цитозоле, ведет к повреждению цитоскелета, выполняющего роль якоря между плазматической мембраной и внутренним содержимым клетки. В результате во время набухания клетки происходит отслойка клеточной мембраны от цитоскелета, что делает мембрану более податливой к растяжению и разрыву.
В-третьих, при ишемии появляется небольшое количество высокотоксичных свободных радикалов кислорода.
Итак, основными механизмами гибели клетки при гипоксии являются нарушение окислительного фосфорилирования, приводящее к недостаточности АТФ, повреждение мембран клетки, а важнейшим медиатором необратимых биохимических и морфологических изменений является кальций.
2. Повреждение клетки, вызванное свободными радикалами кислорода. Чаще всего такое повреждение возникает под воздействием химических веществ, лучистой энергии, кислорода и других газов, а также при старении клеток, разрушении опухолей макрофагами и в некоторых иных случаях.
Свободные радикалы представляют собой молекулы кислорода, имеющие один непарный электрон на внешней орбите. В таком состоянии радикал исключительно активен и нестабилен и вступает в реакции с неорганическими и органическими соединениями — белками, липидами и углеводами.
Для повреждения клетки наибольшее значение имеют три реакции, в которые вступают свободные радикалы.
Свободные радикалы могут разрушаться спонтанно. Например, супероксидный анион-радикал является нестабильным соединением и спонтанно разрушается с образованием кислорода и пероксида водорода. Однако имеется несколько ферментных и неферментных систем, которые способствуют окончанию или инактивации свободнорадикальных реакций. Эндогенными или экзогенными антиоксидантами являются витамин Е; сульфгид-рилсодержащие соединения — цистеин и глютатион; белки сыворотки — альбумин, церулоплазмин и трансферрин. Полагают, что трансферрин действует как антиоксидант, связывая свободное железо, которое, как известно, может играть роль катализатора образования свободных радикалов.
Среди ферментов выделяют супероксиддисмутазу, способную превращать супероксидный анион-радикал в пероксид водорода.
Каталаза, сосредоточенная в пероксисомах, разрушает пероксид водорода до кислорода и воды.
При многих патологических процессах конечный результат действия свободных радикалов зависит от баланса между образованием свободных радикалов и их разрушением.
3. Токсическое повреждение.
Примером такого повреждения
является действие химических
веществ, вызывающих
Во-вторых, некоторые другие химические соединения, особенно жирорастворимые токсины, биологически неактивны и вначале превращаются в токсичные метаболиты, которые затем действуют на клетки-мишени. Хотя эти метаболиты могут вызывать повреждение мембран и клеток путем прямого ковалентно-го связывания с мембранными белками и липидами, наиболее важный механизм повреждения мембран включает образование реактивных свободных радикалов и последующее СПОЛ.
СУБКЛЕТОЧНЫЕ ИЗМЕНЕНИЯ ПРИ
Лизосомы содержат различные гидролитические ферменты — кислую фосфатазу, глюкуронидазу, сульфатазу, рибонук-леазу, коллагеназу и др. Эти ферменты синтезируются в гранулярной (шероховатой) эндоплазматической сети и затем "упаковываются" в пластинчатом комплексе (аппарат Гольджи). На этой стадии их называют первичными лизосомами; они сливаются с окруженными мембраной вакуолями, которые содержат продукты переваривания, и образуют фаголизосомы. Лизосомы участвуют в утилизации фагоцитированного материала посредством гетеро- и аутофагии.
Гетерофагия — феномен, посредством которого материал извне захватывается клеткой с помощью эндоцитоза. Поглощение частиц называется фагоцитозом, а растворенных мелких макромолекул — пиноцитозом. Гетерофагия характерна для фагоцитирующих клеток, таких как нейтрофилы и макрофаги. В качестве примеров гетерофагоцитоза можно привести поглощение бактерий нейтрофильными лейкоцитами и удаление апоп-тозных клеток и телец макрофагами. Слияние фагоцитозной вакуоли с лизосомой заканчивается растворением захваченного материала.
Аутофагия характеризуется тем, что при ней внутриклеточные органеллы и порции цитозоля вначале отделяются от цитоплазмы в аутофагические вакуоли, образованные из свободных от рибосом мембран гранулярной эндоплазматической сети, которые затем сливаются с первичными лизосомами или элементами пластинчатого комплекса, образуя аутофаголизосому. Аутофагия — распространенный феномен, направленный на удаление разрушенных органелл поврежденной клетки. Он особенно выражен в клетках, атрофирующихся в результате недостаточного питания или гормональной инволюции.
Ферменты лизосом способны разрушать большинство белков и углеводов, но некоторые липиды все равно остаются непереваренными. Лизосомы с непереваренными остатками встречаются в клетках в виде остаточных телец. Например, гранулы пигмента липофусцина представляют собой непереваренный материал, который образовался после внутриклеточного СПОЛ. Некоторые нерастворимые пигменты, такие как частицы угля, попадающие из атмосферы, или пигмент, вводимый при татуировке, могут находиться в фаголизосомах макрофагов десятилетиями.
В лизосомах накапливаются
также вещества, которые клетки не
могут адекватно
Дисфункция митохондрий
играет важную роль при остром повреждении
клетки. Различные изменения
Аномалии цитоскелета встречаются при различных патологических состояниях. Эти аномалии делятся на дефекты функций клетки (локомоторная и движение внутриклеточных органелл) и накопление фибриллярного материала внутри клетки.
Функционирующие миофиламенты и микротрубочки необходимы для различных стадий миграции лейкоцитов и фагоцитоза. Поэтому именно недостаточностью цитоскелета обусловлены некоторые дефекты движения лейкоцитов в ответ на повреждающие стимулы или неспособность таких клеток осуществлять адекватный фагоцитоз. Например, дефект полимеризации микротрубочек при синдроме Чедиака — Хигаси вызывает замедленное слияние лизосом с фагосомами в лейкоцитах, нарушая таким образом фагоцитоз бактерий; в цитоплазме лейкоцитов появляются крупные аномальные лизосомы. Некоторые лекарственные препараты, такие как цитохалазин В, тормозят функцию миофиламентов и таким образом нарушают фагоцитоз. Дефекты в организации микротрубочек могут тормозить подвижность сперматозоидов, вызывая стерильность у мужчин, а также приводить к неподвижности ресничек дыхательного эпителия, что препятствует очищению дыхательных путей от бактерий и способствует развитию бронхоэктазов.
Информация о работе Цитология. Реакция клеток на повреждающее воздействие. Старение и смерть клеток