Антиоксидантные системы организма

Автор работы: Пользователь скрыл имя, 17 Декабря 2012 в 20:30, доклад

Краткое описание

Повреждающему эффекту СР, АФК противостоит система противоокислительной защиты, главным действующим звеном которой являются антиоксиданты — соединения, способные тормозить, уменьшать интенсивность свободнорадикального окисления (СРО), нейтрализовывать СР путем обмена своего атома водорода (в большинстве случаев) на кислород свободных радикалов. В выведении СР и радикальных форм антиоксидантов играют роль системы естественной детоксикации. Антиоксиданты могут быть природного (биоантиоксиданты) и синтетического происхождения. Вещества этой группы имеют подвижный атом водорода и поэтому реагируют со свободными радикалами, а также катализаторами свободнорадикального окисления и, прежде всего, с ионами металлов переменной валентности.

Прикрепленные файлы: 1 файл

Антиоксидантная система.doc

— 103.00 Кб (Скачать документ)

Убихинон (коэнзим Q). Он необходим для течения  в клетках процессов окисления  и локализован преимущественно  в мембранах митохондрий. Принимает  участие в транспорте электронов по дыхательной цепи на участке между  флавиновыми ферментами и цитохромами. Как и витамин Е, он является ингибитором радикалов фенольного типа, непосредственно реагирует с перекисными радикалами, уменьшает их концентрацию, стабилизирует мембраны. Витамин Е осуществляет первичную защиту от перекисного окисления, а убихиноны присоединяются к процессу после значительного использования витамина.

Эстрогены. Благодаря липидофильности стероидные гормоны имеют мембраннотропные свойства. Из стероидных гормонов антиоксидантными свойствами обладают эстрогены. Активность свободнорадикального окисления повышается в период циклов, когда концентрация эстрогенов низкая и наоборот. Эстрогены регулируют микросомальное окисление, поддерживая активность монооксигеназной системы. При патологических состояниях, которые сопровождаются чрезмерным усилением процессов свободнорадикального окисления, эстрогены предупреждают нарушения микросомального окисления, противодействуют повреждению биомембран.

2.3. Водорастворимые антиоксиданты  действуют во внутриклеточной  и межклеточной жидкости. Такой важный водорастворимый антиоксидант, как аскорбиновая кислота в организме человека не синтезируется, а поступает с пищевыми продуктами (преимущественно овощами и фруктами), в т.ч. в виде окисленной формы — дегидроаскорбиновой кислоты. До сих пор не определены все ферменты, в состав простетических групп которых входит витамин С. Одним из основных свойств витамина является способность к окислительно-восстановительным превращениям. Аскорбиновая кислота способна окисляться в дегидроаскорбиновую кислоту и, таким образом, вместе с ней она представляет окислительно-восстановительную систему, теряющую и присоединяющую электроны и протоны. При этом витаминная активность не снижается (менее стойкая и теряет биологическую активность дегидроаскорбиновая кислота). Как важный компонент биологической антиоксидантной системы витамин С взаимосвязан с глутатионом и токоферолом. Он принимает активное участие в микросомальном окислении эндогенных и чужеродных веществ, стимулирует активность цитохромного звена, процессы гидроксилирования (играет роль восстановителя). От обеспеченности аскорбиновой кислотой зависит активность цитохрома Р-450, фагоцитарная активность нейтрофилов и макрофагов, их антимикробные свойства. Значительную защитную роль как антиоксидант витамин С играет при токсическом действии различных соединений. Аскорбиновая кислота является мощным антиоксидантом, синергистом b-каротина и токоферола. Дефицит аскорбиновой кислоты в организме, помимо снижения антиоксидантной защиты, сопровождается нарушением синтеза коллагена. Аскорбиновая кислота участвует в выработке энергии, необходимой для синтеза интерферона и других цитокинов. Всасываясь в кровь, аскорбиновая кислота быстро попадает в лейкоциты, усиливает их способность к хемотаксису (R. Anderson, 1981; W.R. Beisel, 1982; R.S. Panush et al., 1982; R. Anderson et al., 1987).

Интенсивнее всего нейтрофилы поглощают витамин  С во время «дыхательного взрыва», необходимого для биосинтеза бактерицидных  свободнорадикальных субстанций (R. Moser, F. Weber, 1983). После активации фагоцитов содержание в них аскорбиновой кислоты падает (H. Нemilla et al., 1985; H. Oberritter et al., 1986). Обогащенные аскорбиновой кислотой нейтрофилы усиливают свою способность распознавать и уничтожать (чаще путем фагоцитоза) предраковые клетки, бактериальные, вирусные и другие чужеродные агенты. В норме концентрация витамина С в нейтрофилах в 150 раз выше, чем в плазме (R. Anderson, 1981; R.M. Evans et al., 1982; R. Moser, F. Weber, 1983). Дефицит витамина С сопровождается снижением хемотаксической и бактерицидной активности лимфоцитов (P.G. Shilotry, 1977; R. Anderson et al., 1987), добавки аскорбиновой кислоты усиливают пролиферацию лимфоцитов (R. Anderson, 1981; R.S. Panush, J.C. Delafuente, 1985). Аскорбиновая кислота оказывает защитное действие по отношению к продуцируемой в легких a-1-протеазе (свободные радикалы, вырабатывающиеся во время «дыхательного взрыва», угнетают фермент) (A. Theron, R. Anderson, 1985). Добавки витамина С улучшают иммунные реакции за счет поддержания уровня содержания витамина Е в крови и тканях (витамин Е также является выраженным стимулятором иммунной системы (A. Bendich et al., 1983). Усиление пролиферации лимфоцитов наиболее выражено при одновременном назначении витаминов С и Е. Дополнительное введение витамина С стабилизирует содержание витамина Е в плазме, тканях. И, наоборот, дефицит витамина С сопровождается снижением содержания витамина Е в тканях и плазме. Витамин С защищает противоокислительную активность витамина Е (A. Bendich et al., 1986), представляет собой первую линию защиты в организме от действия различных свободных радикалов и других окислителей (B. Frei et al., 1988). Он ингибирует перекисное окисление липидов (хотя основную роль в этом играет a-токоферол), нейтрализует окислители, поступающие с загрязненным воздухом (NO, свободные радикалы сигаретного дыма), редуцирует канцерогенные нитроамины. Аскорбиновая кислота предотвращает пероксидацию холестерола ЛПНП (K.L. Retsky et al., 1993) и тем самым препятствует прогрессированию атеросклероза. Смесь аскорбиновой кислоты с ионами Аu или Сu in vitro может инициировать свободнорадикальные процессы, но в организме это не происходит так, как названные ионы металлов связаны белками. Хотя, по мнению B. Halliwell (1984), локальная реализация этого эффекта в организме может иметь место.

Аскорбиновая  кислота является кофактором для  ряда монооксигеназ (гидроксилирование  пролина, катаболизм тирозина).

Соединения, которые содержат серу. Важным звеном антиокислительной системы являются биомолекулы, которые содержат сульфгидрильные группы. К ним относятся основные аминокислоты — цистеин, цистин, метионин. Они входят в состав белков, активных центров ферментов, ряда гормонов (инсулин, окситоцин), служат предшественниками глутатиона, коэнзима А. Основной мобильный фонд сульфгидрильных групп представляет собой глутатион (трипептид Glu-Cys-Glu), который содержится почти во всех клетках. Его антиоксидантное действие катализируют глутатионпероксидаза, глутатионредуктаза, глутатион-S-трансфераза. Глутатионпероксидаза содержит селен и играет основную роль в инактивации липидных гидроперекисных соединений. Глутатионредуктаза поддерживает достаточный уровень активного глутатиона путем восстановления его дисульфидной формы. Восстановленный глутатион осуществляет детоксикацию перекиси водорода (H2O2) и гидроперекисей, которые возникают при реакции активных форм кислорода (АФК) с полиненасыщенными жирными кислотами мембран. Основной функцией глутатион-S-трансферазы (функционирует в гепатоцитах) является детоксикация ряда соединений путем переноса на них атомов серы с последующим образованием меркаптидов (соединений серы с металлами), глутатионпроизводных чужеродных веществ.

Липоевая  кислота функционирует как окислительно-восстановительная  система: она может существовать в окисленной (-S-S-) и восстановленной (SH) форме, реализуя таким образом свои коферментные функции. Участвует в окислительном декарбоксилировании a-кетокислот (пировиноградной, кетоглютаровой), является простетической группой пируват- и кетоглютарат-дегидрогеназной системы (вместе с тиаминпирофосфатом и КоА).

Церулоплазмин — транспортная форма меди является универсальным внеклеточным «гасителем» свободных радикалов. Он имеет супероксиддисмутазную активность: восстанавливает в крови супероксидные радикалы до кислорода и воды и этим защищает от повреждения липидные структуры мембран. Одной из основных функций церулоплазмина является нейтрализация свободных радикалов, которые освобождаются вовне макрофагами и нейтрофилами во время фагоцитоза, а также при интенсификации свободнорадикального окисления в очагах воспаления. Он окисляет разные субстраты: серотонин, катехоламины, полиамины, полифенолы, превращает двухвалентное железо в трехвалентное. Церулоплазмин переносит медь из печени к органам и тканям, где она функционирует в виде цитохром-С-редуктазы и супероксиддисмутазы. Фермент является фактором естественной защиты организма при воспалительных, аллергических процессах, стрессовых состояниях, повреждениях тканей, в частности, при инфаркте миокарда, ишемии.

Фенольные соединения (флавоноиды, полифенолы). Основой структуры фенольных веществ является углеродный скелет, имеющий гидроксильные, метильные, метоксильные, ацетильные и другие группировки. Они способны к легкой ступенчатой отдаче электронов и имеют два механизма антиоксидантной активности: инактивируют окислительные свободные радикалы, а также образуют стабильные комплексы с металлами (железом, медью, кобальтом, цинком, молибденом, алюминием) и выключают их каталитическое действие (В.А. Барабой, 1984). Молекулы фенольных соединений, нейтрализуя и инактивируя радикал, сами превращаются в малоактивные радикалы. В организме человека синтезируется ряд фенольных соединений — медиаторов: производные пирокатехина (адреналин, норадреналин, дофамин). К фенольным соединениям также относятся триптофан, фенилаланин, витамины Е и К, убихинон, тиреоидные и стероидные гормоны. Антирадикальную активность имеют только восстановленные формы фенольных соединений, а хинонные формы являются слабыми антиоксидантами. Хинонные формы восстанавливает, возвращая им таким образом антиокислительные свойства, аскорбиновая кислота. Переход фенольных форм в хинонные является средством регуляции свободнорадикального окисления мембран. Значительное накопление фенольных форм естественных антиоксидантов может сопровождаться интенсификацией свободнорадикального окисления со снижением содержания антиоксидантов. Фенольные соединения способны также образовывать стойкие комплексы с медью, железом, которые катализируют реакции СРО. Считают, что в условиях стресса регуляторные механизмы дополнительно выбрасывают в кровь антиоксиданты — биологически активные фенольные соединения: адреналин, норадреналин, дофамин, серотонин, а также тиреоидные и стероидные гормоны. Однако, как мы установили, при действии перечисленных соединений (в первую очередь, катехоламинов) в организме, в частности в нейтрофильных лейкоцитах, усиливаются катаболические процессы, в том числе перекисное окисление полиненасыщенных жирных кислот. Флавоноиды in vitro ингибируют пероксидацию липидов. Они, как и аскорбиновая кислота, в смеси с ионами Fe, Cu могут выступать в роли прооксидантов. Их антиоксидантная роль in vivo не изучена в достаточной мере (B. Halliwel, 1994).

К внеклеточным антиоксидантным  механизмам относятся (B. Halliwel, 1994) трансферрин (железотранспортный протеин), лактоферрин (железосвязывающий протеин). Находясь в составе указанных протеинов, железо не катализирует свободнорадикальные повреждения. Не стимулирует также свободнорадикальные реакции железо в составе ферритина. Свободный гем и гем протеина, обладающие минимальной способностью катализировать свободнорадикальные повреждения, связываются с гемопексином и гаптоглобином. Обезвреживать свободные радикалы, связывать ионы меди может альбумин, молекула которого содержит одну сульфгидрильную группу. В качестве водорастворимого антиоксиданта рассматривается мочевина — конечный продукт пуринового обмена (N.I. Krinsky, 1988). Обезвреживать свободные радикалы может мочевая кислота, содержащаяся во внутренних средах организма (0,5 ммоль/л). Существуют ферменты, обезвреживающие поврежденные свободными радикалами протеины, окисленные жирные кислоты, а также ДНК.

Таким образом, ингибирование  радикалов осуществляется системой антиоксидантов. Начальную стадию аутоокисления  в мембранах угнетают токоферол, полифенолы, супероксиддисмутаза. Радикалы токоферола, полифенолов регенерируются под влиянием аскорбиновой кислоты, находящейся в гидрофильном слое мембран. Окисленные формы аскорбиновой кислоты восстанавливаются глутатионом (или эрготионеином), которые в свою очередь получают атомы водорода от НАДФ.H2. В ингибировании участвуют ферменты, катализирующие окислительно-восстановительные превращения глутатиона и аскорбиновой кислоты — глутатионзависимая редуктаза и дегидрогеназа, а также каталаза и пероксидаза. В плазме крови активно действует церулоплазмин. Представленная система поддерживает свободнорадикальное окисление липидов в мембранах на чрезвычайно низком уровне. А. Ленинджер (1981) считает, что аутоокисление липидов в организме полностью ингибируется витамином Е, аскорбиновой кислотой, различными ферментами. Функционирование цепи биоантиоксидантов и системы ферментов зависит от фонда атомов водорода (НАДФ.H2). В свою очередь этот фонд пополняется за счет дегидрирования энергетических субстратов, т. е. при ферментативном окислении. Эти факты свидетельствуют о наличии сопряженности между ферментативным окислением (окислительным фосфорилированием) и свободнорадикальным окислением, что мы наблюдали у больных при возникновении различных заболеваний и состояний: одновременно повышаются как показатели активности окислительно-восстановительных ферментов (дегидрогеназ, цитохромоксидазы), так и показатели содержания промежуточных продуктов переокисления липидов (диеновых конъюгатов, малонового диальдегида и др.). В разных тканях преобладают определенные компоненты АОС (В.Н. Бобырев и соавт., 1994). В клетках железистого эпителия, эритроцитах основным источником водорода для системы антиоксидантов является НАДФ.H2. Во внеклеточных структурах (где нет фонда НАДФ.H2) важное значение имеют восстановленные формы глутатиона, аскорбата. В волокнах основного вещества сосудистой стенки, плазме крови ингибирование свободнорадикального окисления осуществляют токоферолы, аскорбат, биофлавоноиды (хронический дефицит в организме эрготионеина, аскорбата, токоферола, биофлавоноидов приводит к повреждению сосудистой стенки). В плазме крови свободные радикалы нейтрализует церулоплазмин. В хрусталике глаза наблюдается высокая активность СОД, глутатионпероксидазы, глутатионредуктазы. Особенности функционирования антиоксидантной системы в различных органах и тканях определяются генотипом, а также зависят от поступления в организм индукторов СРО, обеспеченности биоантиоксидантами и в первую очередь a-токоферолом, аскорбиновой кислотой, b-каротином, селеном. Длительная, а также часто повторяющаяся, интенсификация свободнорадикального окисления приводит к истощению антиоксидантной системы (дефициту витаминов Е, С, b-каротина, глутатиона, селена, снижению активности СОД, каталазы, глутатионпероксидазы и др.). Так как свободнорадикальные процессы совершаются не только в клеточных мембранах, но и в цитозоле, внеклеточном окружении, эффективная антиоксидантная защита возможна при одновременном (сочетанном) приеме жиро- и водорастворимых антиоксидантов в виде комплексов. Антиоксидантные комплексы восстанавливают (пополняют) пул основных антиоксидантных веществ в организме, которые интенсивно расходуются при патологических состояниях.


Информация о работе Антиоксидантные системы организма