Ангиографические системы и комплексы

Автор работы: Пользователь скрыл имя, 02 Марта 2014 в 20:34, курсовая работа

Краткое описание

Благодаря применению новых ангиографических методов исследований, многие отрасли медицины получили новый толчок в своем развитии. Некоторые новые специальные отрасли, такие как сердечно-сосудистая хирургия, возникли в результате постоянного взаимодействия с ангиографией.
Свою задачу врач-рентгенолог сможет выполнить лишь в том случае, если оборудование ангиографического комплекса будет всегда исправно и правильно настроено. Оно должно обеспечивать четкую работу во всех режимах, что возможно только при соблюдении правил и норм технического обслуживания.

Содержание

Введение. 3
Глава 1. Общая часть. 4
Глава 2. Специальная часть. 9
Глава 3. Классификация ангиографов представленных на рынке. 22
Заключение. 25
Список литературы. 26

Прикрепленные файлы: 1 файл

Ангиографические системы и комплексы.doc

— 318.00 Кб (Скачать документ)

Обеспечение защиты от излучения обслуживающего персонала как при контроле просвечиванием, так и при изготовлении серийных снимков.

К настоящему времени выделились следующие виды контрастных ангиографических исследований:

сосудов мозга (церебральные исследования);

сердечно-сосудистой системы (коронарография, васкулярная ангиография, вентрикулография);

брюшной аорты сосудов почек (аортография);

периферических сосудов конечностей.

Эти четыре вида исследований требуют различных методик и осуществляются на различной аппаратуре.

Например, исследования сосудов мозга должно преимущественно проводиться на широкоформатной пленке в двух взаимно перпендикулярных (ортогональных) проекциях. Сердечно-сосудистая система должна исследоваться в одной или двух полипозиционных положениях (с одним или несколькими введениями контраста) с изменением положения проекций, что предъявляет к ангиографической системе дополнительные требования о быстром изменении позиций. Исследования брюшной аорты и сосудов почек проводятся в одной проекции, так же как и исследование периферических сосудов конечностей.

Большинство комплексов аппаратуры для ангиографии разработано на агрегатном принципе, позволяющем медицинским учреждениям приобретать не весь комплект дорогостоящего оборудования, а по частям. Например:

Ангиоскоп – основной блок, содержащий в себе потолочный штатив с дугой-держателем источника рентгеновского излучения и ЭОП с телевизионной камерой. Также сюда входит стол координат.

Для возможности получения сагиттальных снимков на крупноформатную пленку, используют специальный сменник крупноформатной пленки и дополнительную трубку, которая крепится на портативном штативе и заранее центрируется на съемный аппарат.

Для обеспечения бокового снимка на потолочном штативе крепится еще одна рентгеновская трубка, которая заранее центрирована со вторым устройством, для смены пленок и с исследуемой областью.

Таким образом, создание аппаратуры для перечисленных выше исследований в мировой практике рентгеноаппаратостроения в основном развивалось в одном направлении: создание установок для одного или двух исследований.

Узкая направленность устройств для серийных исследований удобна лишь немногим лечебным учреждениям – специализированным клиникам и институтам. Для большинства больниц и клиник широкого профиля, имеющих несколько хирургических отделений узконаправленность аппаратуры неудобна из-за того, что одному лечебному учреждению приходится приобретать несколько установок, различающихся незначительно.

Для разрешения этой проблемы стали выпускать универсальные ангиографические установки, позволяющие проводить большинство контрастных исследований.

 

Глава 2. Специальная часть

 

Питающее устройство ангиографического аппарата.

Рентгеновским питающим устройством (УРП) называется комплекс электротехнической, электромеханической и электронной аппаратуры, обеспечивающий питание рентгеновской трубки, выбор, регулирование и стабилизацию режимов ее работы, ее защиту от перегрузки при проведении различных видов исследований, а также взаимодействие всех частей рентгеновского аппарата.

Тенденция развития УРП:

введение микропроцессорной техники для автоматизации управления аппаратом, повышения удобства обслуживания, расширения автоматики управления по исследуемым органам тела, технической диагностики, повышения надежности, уменьшения массы и габаритов;

использование преобразователей напряжения на повышенной частоте для получения анодного напряжения рентгеновских трубок.

К питающим устройствам ангиографических комплексов предъявляются более жесткие требования, чем в других аппаратах. Причиной таких условий является динамика сердца и его сравнительно быстрые сокращения (0,2 – 0,3 секунды), что ведет к необходимости уменьшения выдержек вплоть до 0,01 – 0,02 секунды. Из-за значительной плотности тканей сердца величина экспозиции при напряжении U = (80 – 100) кВ должна составлять не менее 20 – 25 мАс. Такой режим может быть осуществлен питающим устройством мощностью 50 кВт (I = 600 мА при U = 83 кВ, t = (0,02 – 0,05) сек).

При рентгенологическом исследовании коронарных сосудов необходимо учитывать быстрые и сложные движения в виде сокращений сердца и пульсирующего продвижения крови по сосудам. Анализ рентгенограмм, сделанных последовательно с частотой снимков 6 снимков в секунду при контрастировании коронарных сосудов, должен позволять оценить скорость кровотока.

В разные моменты времени сердечного цикла на разных участках эта скорость может принимать значения от 15 до 20 см/с. Чтобы динамическая нерезкость изображения не превышала 0,25 мм, рентгенограмму коронарного сосуда следует выполнять с выдержкой 0,002 – 0,001 секунды.

Вследствие малых размеров коронарные сосуды даже при контрастировании весьма слабо различаются на фоне сердца. Поэтому при коронарографии следует выбирать снимочные параметры, исходя из требования обеспечения максимальной контрастной чувствительности. Для этого следует выбирать минимально возможное анодное напряжение. В сочетании с короткими выдержками малые напряжения требуют резко повышенных токов.

Для снимков коронарных сосудов используют аппараты с импульсным питающим устройством.

Современные импульсные аппараты обеспечивают мощность 150 кВт в импульсе. При этом крупноформатные снимки коронарных сосудов получают при анодном токе 1500 – 2000 мА и выдержке 0,01 секунды. При выполнении снимков с экрана УРИ на фотопленку можно работать с выдержками более короткими (до 0,001 секунды).

Скорость кровотока в магистральных сосудах, сосудах головного мозга и спинного существенно меньше, чем в коронарных. Однако, из-за значительной плотности этих сосудов мощность питающих устройств при их исследованиях должна составлять не менее 100 кВт. Работать можно с выдержками 0,05 секунды.

Так, например, при аортографии работают с анодным напряжением 100 – 120 кВ при экспозиции 50 – 60 мАс (то есть с анодным током 1000 мА). При исследовании периферических сосудов, флебографии и лимфографии, где скорость кровотока сравнительно не велика, работают с выдержкой 0,1 секунды.

Плотность объектов исследования при указанных видах ангиографии также несколько меньше, чем при предыдущих. Поэтому мощность применяемых в этом случае аппаратов может составить 50 кВт.

Питающее устройство включает в себя генераторное устройство, пульт управления, иногда низковольтный шкаф. В последних располагаются системы регулирования, защиты, сигнализации, автоматики.

Генераторные устройства ангиографических аппаратов должны обеспечить возможность работы со сравнительно небольшими напряжениями, высокими анодными токами и короткими выдержками.

Для ангиографических исследований обычно используют мощный трехфазный генератор с 6-ти или 12-ти вентильным выпрямителем, дающим практически постоянное анодное напряжение. Включение и выключение анодного напряжения (высокого) осуществляется электронным коммутатором (синхронизирующее реле времени).

Штативные устройства ангиографического комплекса.

Проекционный принцип теневого рентгеновского изображения объекта (полученного путем облучения приемника излучения модулированным объектом исследования первичного пучка излучения) предопределяет необходимость ориентации объекта исследования относительно источника и приемника излучения. Взаимное расположение этих трех элементов определяется методикой исследования и создается с помощью специальных рентгенодиагностических устройств – штативов, осуществляющих линейные и угловые перемещения обследуемого, источника излучения и приемника и их относительное согласованное перемещение в процессе исследования. Комплекс рентгенодиагностического устройства или устройств с другим необходимым оборудованием часто называют рабочим местом применительно к определенной методике или области рентгенологического исследования. Рабочее место в общем случае может содержать любое число штативов, связанных между собой требованиями методики исследования.

Непрерывное совершенствование известных и появление новых методик рентгенологического исследования, а также совершенствование приемников излучения приводит к разработке новых и совершенствованию известных рентгенодиагностических устройств, к постоянному обновлению штативов рентгенодиагностических аппаратов.

Назначение и устройство стола координат ангиографического комплекса.

Стол координат является частью ангиографического комплекса. Он содержит в себе рентгеновскую трубку и позволяет перемещать больного в нужную позицию, приспосабливать исследуемую часть к месту, где будут производиться снимки. Все аппараты группируются вокруг стола координат.

Стол координат должен давать возможность размещения обычного механизма для смены кадров с высотой в 800 мм под столом и вне его.

Следующим требованием является возможность большого передвижения деки в боковом и продольном направлениях. Двухстороннее перемещение деки стола позволяет обеспечить более точную установку кадров при просвечивании и изготовлении снимков. Также это очень удобно обслуживающему персоналу.

Такие принадлежности как держатели рук, инъекционный аппарат и другие присоединяются к обычным столбикам на краю стола.

При оформлении стола надо иметь ввиду, кроме минимальной фильтрации луча, удовлетворительную грузоподъемность без деформации, материал не дающий рентгеновской тени и возможность легкой стерилизации.

Методы визуализации рентгеновского изображения в ангиографическом комплексе.

В данном комплексе для визуализации рентгеновского изображения используют ЭОП, который сочетается:

С телевизионным устройством, дающим возможность наблюдать рентгеновское изображение на экране.

С кинокамерой.

С устройством для видеомагнитнофонной записи.

Для передачи изображения на монитор служит телевизионная установка, которая крепится на потолочном телескопическом штативе.

На выходе ЭОП находится телевизионная камера, с помощью которой мы можем осуществить телевизионный контроль по мониторам и качество изображения будет зависеть от двух факторов:

Качество изображения электронно-оптического усилителя.

Качество передачи изображения телекамеры.

Процесс преобразования рентгеновского изображения в электронное и дальнейшая его передача показан на рисунке 2.

При просвечивании с ЭОП и телевизионной системой изображение получается более четким, что дает возможность сократить время исследования. Применение телевизионных систем дает возможность регулировать четкость и контрастность изображения и обеспечить постоянный контроль в течении всего ангиографического исследования.

Большая скорость сокращения сердца вызывает размытость изображения. Допустимые пределы размытости изображения могут быть получены только путем сокращения времени экспонирования в диапазоне до нескольких миллисекунд. Существенного сокращения времени экспонирования можно добиться с помощью техники рентгенографии с электроннооптическим усилителем. Это возможно благодаря значительному уменьшению дозы излучения.

 

 
 




 

 
 




 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2. Процесс преобразования рентгеновского излучения в электронное.

 

 

Электроннооптический преобразователь.

Флюорографическая камера.

Стол координат.

Рентгеновские лучи.

Система объектив - линзы.

Система зеркал.

Кинокамера.

Передающая телевизионная трубка.

Сенсор для автоматического контроля.

Помимо ЭОП к методам визуализации рентгеновского изображения относится электронный шкаф. Он представляет собой сложную конструкцию, состоящую из:

блока регулировки;

линейного трансформатора;

флюоро-контактора;

блока питания системы кино;

блока управления камеры 105 мм;

блока контроля мА;

системы регулировки кино;

панели реле.

Также непосредственную связь с электронным шкафом имеют:

выносной сенсор;

цифровой дисплей;

видеомагнитофон;

пульт управления.

При киносъемке с помощью электронного шкафа и телекамеры можно осуществлять контроль момента съемки, показанном на рисунке 3.

Запускаем кинокамеру, работает рентгеновская трубка, с помощью электроннооптического усилителя изображение передается на телекамеру, потом на электронный шкаф и на видеоканал.

 
 




 

Рис. 3. Функциональная схема визуализации рентгеновского изображения.

 

Устройство для фиксации изображений в ангиографическом комплексе.

Информация о работе Ангиографические системы и комплексы