Автор работы: Пользователь скрыл имя, 21 Января 2014 в 15:55, реферат
Иногда люди не вполне отчетливо различают работы по управлению проектом и работы жизненного цикла проекта, так как для успешного выполнения проекта необходимы работы обоих видов. Основное различие между ними заключается в том, что управление проектом сосредоточено на определении, планировании, мониторинге и контроле, а также на закрытии проекта. Работы же, связанные с фактическим созданием результатов поставки проекта, принято относить к "жизненному циклу" проекта.
Введение……………………………………………………………………….. 3
Жизненный цикл проекта…………………………………………………….. 5
Модели жизненного цикла………………………………………………........ 7
Классификация математических моделей…………………………………… 9
Имитационная модель………………………………………………………… 14
Имитационная модель жизненного цикла проекта………………………….. 20
Управление проектами………………………………………………………… 25
Методы управления проектами………………………………………….......... 27
Содержание процессов управления ресурсами проекта…………………...... 30
Заключение……………………………………………………………………… 34
Идеальные модели можно разделить на:
Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.
Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).
Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.
Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели.
Идеальные знаковые модели - это символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление.
Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.
В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.
Остановимся на одном
из наиболее универсальных видов
моделирования - математическом, ставящим
в соответствие моделируемому физическому
процессу систему математических соотношений,
решение которой позволяет
Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью, более удобной для экспериментального исследования с помощью ЭВМ.
Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.
В общем случае математическая модель реального объекта, процесса или системы представляется в виде системы функционалов
Фi (X,Y,Z,t)=0,
где X - вектор входных переменных, X=[x1,x2,x3, ... , xN]t,
Y - вектор выходных переменных, Y=[y1,y2,y3, ... , yN]t,
Z - вектор внешних воздействий, Z=[z1,z2,z3, ... , zN]t,
t - координата времени.
Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.
Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель. Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).
Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.
Форма и принципы представления математической модели зависит от многих факторов.
По принципам построения математические модели разделяют на:
1.аналитические;
2.имитационные.
В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей.
Аналитическая модель разделяется на типы в зависимости от математической проблемы:
1.уравнения (алгебраические,
трансцендентные,
2.аппроксимационные задачи
(интерполяция, экстраполяция, численное
интегрирование и
3.задачи оптимизации,
4.стохастические проблемы.
Однако по мере усложнения
объекта моделирования
В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.
В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:
1.детерминированные,
2.стохастические.
В детерминированных
моделях предполагается отсутствие
всяких случайных воздействий, элементы
модели (переменные, математические связи)
достаточно точно установленные, поведение
системы можно точно
Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.
По виду входной информации модели разделяются на:
1.непрерывные,
2.дискретные.
Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.
По поведению моделей во времени они разделяются на:
1.статические,
2.динамические.
Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.
По степени соответствия между математической моделью и реальным объектом, процессом или системой математические модели разделяют на:
1.изоморфные (одинаковые по форме),
2.гомоморфные (разные по форме).
Модель называется изоморфной, если между нею и реальным объектом, процессом или системой существует полное поэлементное соответствие. Гомоморфной - если существует соответствие лишь между наиболее значительными составными частями объекта и модели.
Имитационная модель.
Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.
В аналитических моделях
Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течении заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.
Имитационное моделирование - это совокупность методов алгоритмизации функционирования объектов исследований, программной реализации алгоритмических описаний, организации, планирования и выполнения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими функционирование РПС в течении заданного периода.
Под алгоритмизацией
"Имитационное моделирование" (ИМ)- это двойной термин. "Имитация" и "моделирование" - это синонимы. Фактически все области науки и техники являются моделями реальных процессов. Чтобы отличить математические модели друг от друга, исследователи стали давать им дополнительные названия. Термин "имитационное моделирование" означает, что мы имеем дело с такими математическими моделями, с помощью которых нельзя заранее вычислить или предсказать поведение системы, а для предсказания поведения системы необходим вычислительный эксперимент (имитация) на математической модели при заданных исходных данных.
Основное достоинство ИМ:
Эти достоинства обеспечивают имитационному методу широкое распространение.
Рекомендуется использовать имитационное моделирование в следующих случаях:
Однако ИМ наряду с
достоинствами имеет и
И тем не менее ИМ является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.
Одним из видов имитационного моделирования является статистическое имитационное моделирование, позволяющее воспроизводить на ЭВМ функционирование сложных случайных процессов.
При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели.
В вероятностных аналитических
моделях влияние случайных
Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях.
В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.
Статистическая модель случайного процесса - это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.