Структура, виды, особенности доказательства

Автор работы: Пользователь скрыл имя, 25 Декабря 2013 в 17:42, реферат

Краткое описание

Доказательство - это логическое рассуждение, в процессе которого подтверждается или опровергается истинность какой-либо мысли с помощью других положений, проверенных практикой. Путем доказательства совершается переход от вероятного, недостоверного знания к достоверному. Его назначение - служить сверкой теоретических положений и выводов с реальной действительностью. Доказательство в формальной логике представляется не как установление объективной истинности путем практических действий и теоретических средств, а как выведение одних истин из других, уже обоснованных, как установление логической связи между суждениями, отражающими явления предметного мира.

Прикрепленные файлы: 1 файл

Структура и виды доказательства.doc

— 42.00 Кб (Скачать документ)

Структура и виды доказательства

Доказательство - это  логическое рассуждение, в процессе которого подтверждается или опровергается  истинность какой-либо мысли с помощью  других положений, проверенных практикой. Путем доказательства совершается  переход от вероятного, недостоверного знания к достоверному. Его назначение - служить сверкой теоретических положений и выводов с реальной действительностью. Доказательство в формальной логике представляется не как установление объективной истинности путем практических действий и теоретических средств, а как выведение одних истин из других, уже обоснованных, как установление логической связи между суждениями, отражающими явления предметного мира. Формальную логику принято характеризовать как науку о выводном знании, о рассуждении, объяснении; логической стороной объяснения служит доказательство. Доказательство связано с убеждением, но не тождественно ему: доказательства должны основываться на данные науки и общественно-исторической практики, убеждения же могут быть основаны, например, на религиозной вере в догматы церкви, на предрассудках, на неосведомлённости людей в вопросах экономики и политики, на видимости доказательности, основанной на различного рода софизмах. Религиозные проповедники могут “убедить” какую-то часть людей в существовании якобы бога, ада, рая и так далее.

Структура доказательства

Основу доказательства составляют следующие положения:

1. Тезис.

2.Аргументы.

3.Демонстрация.

Тезис — это суждение, истинность которого надо доказать. Аргументы — это те истинные суждения, которыми пользуются при доказательстве тезиса. Формой доказательства, или демонстрацией, называется способ логической связи между тезисом и аргументами.

Существуют правила  доказательного рассуждения. Нарушение  этих правил ведет к ошибкам, относящимся к доказываемому тезису, аргументам или к самой форме доказательства. Различают несколько видов аргументов:

1. Удостоверенные единичные  факты. К такого рода аргументам  относится так называемый фактический  материал, то есть статистические  данные о населении, территории государства, количестве вооружения, свидетельские показания, подписи лица на документе, научные данные научные факты. Роль фактов в обосновании выдвинутых положений, в том числе научных, очень велика.

Как не совершенно крыло  птицы, оно никогда не смогло бы поднять её в высь, не опираясь на воздух.

Факты - воздух ученого. Без  них мы никогда не сможем взлететь. Без них наши теории - пустые потуги.

Но изучая, экспериментируя, наблюдая, старайтесь на оставаться на поверхности фактов. Не превращайтесь в архивариусов фактов. Пытайтесь проникнуть в тайну их возникновения. Настойчиво ищите законы ими управляющие. Ещё Мичурин сказал: “Мы не можем ждать милостей от природы; взять их у неё - наша задача”. Ценой десятков тысяч проведенных опытов, сбора научных фактов он создаёт свою стройную научную систему выведения новых сортов растений.

2.Определения как аргументы  доказательства.

Определения понятий  формулируются в каждой науке. Свои определения существуют в химии, математике, физике и так далее.

3.Аксиомы и постулаты.

В математике, механике, теоретической физике, математической логике и других науках кроме определений  вводят аксиомы. Аксиомы - это суждения, которые принимаются в качестве аргументов без доказательства, так  как они подтверждены многовековой практикой людей.

4.Ранее доказанные  законы науки и теоремы как  аргументы доказательства.

В качестве аргументов доказательства могут выступать ранее доказанные законы физики, химии, биологии и других наук, теоремы математики.

В ходе доказательства какого-либо тезиса может использоваться не один, а несколько из перечисленных видов аргументов.

Следует особо подчеркнуть, что критерием истинности является практика. Если практика подтвердила  истинность суждения, то дальнейшее доказательство не нужно. Практика - критерий истинности всякой теории.

 

 

 

Доказательства по форме  делятся на прямые и непрямые (косвенные).

Прямое доказательство идет от рассмотрения аргументов к доказательству тезиса, то есть истинность доказательства непосредственно обосновывается аргументами. Схема этого доказательства такова: из данных аргументов (a,b,c...) необходимо следуют истинные суждения (k,m,l...), а из последних следует доказываемый тезис q. По этому типу проводятся доказательства в судебной практике, в науке, в полемике, в сочинениях школьников, при изложении материала учителем. Широко используется прямое доказательство в статистических отчетах, в различного рода документах, в постановлениях. В построении прямого доказательства можно выделить два связанных между собою этапа: отыскание тех, признанных обоснованными утверждений, которые способны быть убедительными аргументами для доказываемого положения; установление логической связи между найденными аргументами и тезисом. Нередко первый этап считается подготовительным и под доказательством понимается дедукция, связывающая подобранные аргументы и доказываемый тезис.

Непрямое (Косвенное) доказательство - это доказательство, в котором истинность выдвинутого тезиса обосновывается путём доказательства ложности антитезиса. Оно применяется тогда, когда нет аргументов для прямого доказательства. Антитезис может быть выражен в одной из двух форм:1)если тезис обозначить буквой а, то его отрицание (а) будет антитезисом, то есть противоречащим тезису суждением; 2) антитезисом для тезиса а в суждении а...в...с служат суждения в и с.

Косвенное доказательство устанавливает  справедливость тезиса тем, что вскрывает  ошибочность противоположного ему допущения, антитезиса.

Как с иронией замечает американский математик Д. Пойа, «косвенное доказательство имеет некоторое сходство с надувательским приемом политикана, поддерживающего  своего кандидата тем, что опорочивает  репутацию кандидата другой партии».

В косвенном доказательстве рассуждение  идет как бы окольным путем. Вместо того чтобы Прямо отыскивать аргументы  для выведения из них доказываемого  положения, формулируется антитезис, отрицание этого положения. Далее  тем или иным способом показывается несостоятельность антитезиса. По закону исключенного третьего, если одно из противоречащих друг другу утверждений ошибочно, второе должно быть верным. Антитезис ошибочен, значит, тезис является верным.

Поскольку косвенное доказательство использует отрицание доказываемого положения, оно является, как говорят, доказательством от противного. Доказательства от противного обычны в наших рассуждениях, особенно в споре. При умелом применении они могут обладать особенной убедительностью.

Итак, ход мысли в косвенном доказательстве определяется тем, что вместо обоснования справедливости тезиса стремятся показать несостоятельность его отрицания. В зависимости от того, как решается последняя задача, можно выделить несколько разновидностей косвенного доказательства.

Один из приемов косвенного доказательства — выведение из антитезиса логического противоречия. Если антитезис содержит противоречие, он явно ошибочен. Тогда его отрицание — тезис доказательства — верно. Имеется еще одна разновидность косвенного доказательства, когда прямо не приходится искать ложные следствия. Дело в том, что для доказательства утверждения достаточно показать, что оно логически вытекает из своего собственного отрицания.

Этот прием опирается на закон  Клавия, говорящий, что если из ложности утверждения вытекает его истинность, то утверждение истинно. К примеру, если из допущения, что дважды два равно пяти, выведено, что это не так, тем самым доказано, что дважды два не равняется пяти.

 

Разделительное доказательство

Во всех рассмотренных косвенных доказательствах выдвигаются две альтернативы: тезис и антитезис. Затем показывается ложность последнего, в итоге остается только тезис. Можно не ограничивать число принимаемых во внимание возможностей только двумя. Это приведет к так называемому разделительному косвенному доказательству, или доказательству через исключение. Оно применяется в тех случаях, когда известно, что доказываемый тезис входит в число альтернатив, полностью исчерпывающих все возможные альтернативы данной области.

 

 

 


Информация о работе Структура, виды, особенности доказательства