Автор работы: Пользователь скрыл имя, 15 Декабря 2013 в 00:04, шпаргалка
Работа содержит ответы на вопросы к зачету по "Логике".
Это животное полосатое.
Это животное - тигр
4. Все ушастые тюлени – ластоногие.
Все ушастые тюлени - водные млекопитающие
______________________________
Все водные млекопитающие -ластоногие.
В третьем умозаключении обе посылки - истинные суждения, но полученное заключение может быть как ложным, так и истинным потому, что нарушено было одно из правил умозаключения. В четвертом умозаключении обе посылки - истинные суждения, но заключение - ложное, т. к. нарушено правило построения умозаключения (в соответствии с правилом, вместо слова “все” должно стоять слово “некоторые”).
Итак, с точки зрения содержания мышление может давать истинное или ложное отражение мира, а со стороны формы оно может быть логически правильным или неправильным. Истинность есть соответствие мысли действительности, а правильность мышления - соблюдение законов и правил логики. Нельзя отождествлять (смешивать) следующие понятия: “истинность” (“истина”) и “правильность”, а также понятия “ложность” (“ложь”) и “неправильность”.
Современная логика - это интенсивно развивающаяся наука, которая включает в себя логику формальную и логику диалектическую. На их базе формируется логика научного познания, использующая методы обеих наук для анализа научного знания.
Как уже отмечалось, формальная логика - наука о законах и формах правильного мышления. Формальная логика в определенном смысле подобна грамматике. К. Д. Ушинский считал логику грамматикой мышления. Подобно грамматике, придающей языку стройный и четко осмысленный характер, логика обеспечивает доказательность и стройность мышления.
ВОПРОС 7
В мышлении мы оперируем не только простыми, но и сложными суждениями, образуемыми из простых посредством логических связок (или операций) - конъюнкции, дизъюнкции, импликации, эквиваленции, отрицания, которые также называются логическими константами, или логическими постоянными. Проанализируем, каким образом перечисленные логические связки выражаются в естественном (русском) языке.
Конъюнкция (знак “^”) выражается союзами: “и”, “а”, “но”, “да”, “хотя”, “который”, “зато”, “однако”, “не только..., но и” и др. В логике высказываний знак “U”соединяет простые высказывания, образуя из них сложные. В естественном языке союз “и” и другие слова, соответствующие конъюнкции, могут соединять существительные, глаголы, наречия, прилагательные и иные части речи. Например: “Дети пели и смеялись” (а ^ b) ; “Интересная и красиво оформленная книга лежит на столе”. Последнее высказывание нельзя разбить на два простых, соединенных конъюнкцией:
“Интересная книга лежит на столе” и “Красиво оформленная книга лежит на столе”, так как создается впечатление, что на столе лежат две книги, а не одна.
В логике высказываний действует
закон коммутативности конъ
В естественном языке конъюнкция может быть выражена не только словами, но и знаками препинания: запятой, точкой с запятой, тире. Например: “Сверкнула молния, загремел гром, пошел дождь”.
О выражении конъюнкции средствами естественного языка пишет С. Клини в книге “Математическая логика”. В разделе “Анализ рассуждений” он приводит (не исчерпывающий) список выражений естественного языка, которые могут быть заменены
символами “^” (или “&”).
Формула А ^ В в естественном языке может
выражаться так
“Не только А, но и В Как А, так и В.
В, хотя и А.
В, несмотря на А А, в то время как В”'.
Придумать примеры на все эти структуры предоставляем читателю.
В естественном (русском) языке дизъюнкция (обозначенная а b и а ? b) выражается союзами: “или”, “либо”, “то ли..., то ли” и др. Например: “Вечером я пойду в кино или в библиотеку”; “Это животное принадлежит либо к позвоночным, либо к беспозвоночным”; “Сочинение будет то ли по произведениям Л. Н. Толстого, то ли по произведениям Ф. М. Достоевского”.
В логике высказываний различается нестрогая дизъюнкция, например: “Я подарю ей цветы или книги” (а b) и строгая дизъюнкция, например: “Данный студент находится в институте или дома” (а ? b). В нестрогой дизъюнкции члены дизъюнкции не исключают друг друга, а в строгой - исключают. Для обоих видов дизъюнкции действует закон коммутативности:
в естественном языке эта эквивалентность сохраняется. Например, суждение “Я куплю масло или хлеб” эквивалентно суждению “Я куплю хлеб или масло”.
С. Клини показывает, какими разнообразными способами могут быть выражены в естественном языке импликация (А В) и эквиваленция (А~В)2. (Буквами А и В обозначены переменные высказывания).
Приведем структуры и
соответствующие им примеры, иллюстрирующие
разнообразные способы
1. Если А. то В. Если пойдет дождь, то экскурсия в лес не состоится.
2. Коль скоро А, то В. Коль скоро приближается буря, то медузы приплывают к берегу моря.
3. В случае А имеет место В.
В случае, когда наступает инфляция, имеет место снижение жизненного уровня трудящихся.
4. Для В достаточно А.
Для того чтобы металл расплавить, достаточно его нагреть до температуры плавления.
5. Для А необходимо В.
Для сохранения мира на Земле необходимо увеличить усилия всех государств в борьбе за мир.
6. А (материально) влечет В.
Овладение искусством общения влечет улучшение межличностных отношений.
7. А, только если В.
Ваши коммуникации будут успешнее, только если вы займете позицию: “У меня все в порядке - у тебя все в порядке”'.
8. В, если А.
Мы поедем отдыхать в санаторий, если у нас будет путевка.
Приведем структуры и соответствующие им примеры разнообразных способов выражения эквиваленции:
1. А, если и только если В.
Посевная пройдет успешно, если и только если вовремя будут отремонтированы сельскохозяйственные машины.
2. Если А, то В, и обратно.
“Если вы твердо уверены, что ваши аргументы убедительнее, но ваш коллега, стоящий на той же ступеньке служебной лестницы, не хочет этого замечать, то избегайте призывать на помощь вашего начальника”2, и обратно.
3. А, если В, и В, если А.
Всякое число является четным, если оно делится на 2, и число делится на 2, если оно является четным.
4. Для А необходимо и достаточно В. Для того, чтобы число без остатка делилось на 5, необходимо и достаточно, чтобы его последняя цифра была 0 или 5.
5. А тогда и только тогда, когда В.
B коллективе возникает
хороший психологический
Из приведенных выше схем и соответствующих им высказываний с конкретным разнообразным содержанием становится ясно, насколько многогранны в естественном языке (в частности, русском) средства выражения импликации и эквиваленции и других логических связок (логических терминов). Это можно сказать и о других естественных языках2.
Импликация (а ® 6) не совсем соответствует по смыслу союзу “если..., то” естественного языка, так как в ней может отсутствовать содержательная связь между суждениями а и b. В логике высказываний законом является формула: (а ® b) = (a b) Но в естественном языке дело обстоит иначе. Иногда союз “если..., то” выражает не импликацию, а конъюнкцию. Например: “Если вчера было пасмурно, то сегодня ярко светит солнце”. Это сложное суждение выражается формулой а^b.
В логике, кроме логических связок, для выражения общих и частных суждений используется квантор общности и квантор существования. Запись с квантором общности хР(x) обычно читается так: “Все х (из некоторой области объектов) обладают свойством Р”, а запись с квантором существования хР(х} читается так: “Существуют такие х (в данной области), которые обладают свойством Р”, Например, х (х > 100) читается так: “Существуют такие х, которые больше 100”, где под х подразумевают числа. В русском языке квантор общности выражается словами: “все”, “всякий”, “каждый”, “ни один” и др. Квантор существования выражается словами: “некоторые”, “существуют”, “большинство”, “меньшинство”, “только некоторые”, “иногда”, “тот, который”, “не все”, “многие”, “немало”, “немногие”, “много”, “почти все” и др.
С. Клини пишет о том,
что, переводя выражения обычного языка
с помощью табличных
Контрфактическими называют условные высказывания, выраженные в сослагательном наклонении. Например: “Если бы на Земле не было кислорода, то жизнь на ней была бы невозможна”; “Если бы водитель не нарушил правила, то авария бы не произошла”. В импликации а®b переменная а является основанием (она называется антецедентом). Переменная b - следствием (заключением), она называется консеквентам.
Сослагательное наклонение показывает, что антецедент и консеквент в таких высказываниях ложны, т. е. не соответствуют реальному положению дел. Однако, подобно всем другим высказываниям, контрфактическое высказывание в целом может быть истинным. Оно истинно, если между его антецедентом и консеквентом имеется связь такого рода, что истинность антецедента влечет истинность консеквента. И ложно, если такой связи нет. Например, высказывание “Если бы сейчас была ночь, то на улице было бы темно” истинно, а высказывание “Если бы сейчас была ночь, то на улице было бы светло” ложно (для несеверных широт, так как на Севере летом бывают белые ночи). Поскольку антецедент и консеквент контрфактического высказывания оба ложны, установление их истинности связано с серьезными трудностями.
Контрфактическое высказывание имеет структуру: “Если бы а, то было бы b”. Контрфактические высказывания широко используются в научной практике. Так, например, историки для оценки событий, намерений, мотивов, политических планов и т. п. часто употребляют контрфактические предложения, говорящие, то могло бы быть, если бы дело обстояло не так, как это произошло в действительности. Контрфактичесиое предложение, изъявительные формы антецедента и консеквента которого обозначены соответственно через а и b, принято записывать как а a b.
Примером сложного контрфактического высказывания является следующее истинное высказывание: “Последствия стихии могли быть тяжелее, если бы не мужество и сплоченность людей, четкая организация спасательных работ, неукоснительное выполнение всеми порученного дела”. Чтобы записать формулу этого сложного контрфактического высказывания, надо его сначала привести к четкой логической форме. Она такая: “Если бы не было мужества и сплоченности людей, четкой организации спасательных работ, неукоснительного выполнения всеми порученного дела, то последствия стихии могли бы быть тяжелее”. формула этого контрфактического высказывания такая:
(а^b^с^d) →е.
Здесь а обозначает высказывание
“Мужество людей отсутст
Контрфактические высказывания довольно часто встречаются не только в научной, но и в художественной литературе -как в прозе, так и в поэзии.
В практике математических и иных рассуждений имеются понятия “необходимое условие” и “достаточное условие”. Условие называется необходимым, если оно вытекает из заключения (следствия). Условие называется достаточным, если; .из него вытекает заключение (следствие). Ниже предлагаются задачи, требующие в каждом из следующих предложений вместо многоточия поставить слова: “необходимо”, “достаточно” или “необходимо и достаточно”.
1. Для того чтобы сумма двух целых чисел была четным числом ... чтобы каждое слагаемое было четным.
2. Для того чтобы число делилось на 15 ... чтобы оно делилось на 5.
3. Для того чтобы произведение (х-3)*(х+2)*(х-5) было равно 0,... чтобы х = 3.
4. Для того чтобы
ВОПРОС 8,9
Логика высказываний (или пропозициональная логика от англ. propositional logic, или исчисление высказываний — это формальная теория, основным объектом которой служит понятие логического высказывания. С точки зрения выразительности, её можно охарактеризовать как классическую логику нулевого порядка.
Несмотря на свою важность и широкую сферу применения, логика высказываний является простейшей логикой и имеет очень ограниченные средства для исследования суждений
Основные понятия Базовыми понятиями логики высказываний являются пропозициональная переменная — переменная, значением которой может быть логическое высказывание, и (пропозициональная) формула, определяемой индуктивно следующим образом:
Если P — пропозициональная переменная, то P — формула.
Если A — формула, то A — формула.
Если A и B — формулы, то (A \to B), (A \wedge B) и (A \vee B) — формулы.
Других формул нет.
Множество пропозиционных формул называется языком логики высказываний (англ. propositional language, PL).
Знаки (отрицание, конъюнкция, дизъюнкция и импликация) называются пропозициональными связками. Подформулой называется часть формулы, сама являющаяся формулой. Собственной подформулой называется подформула, не совпадающая со всей формулой.
Правила построения формул логики высказываний[править | править исходный текст]
Элементарное высказывание (буква) является формулой нулевого уровня. Если элементарное логическое высказывание всегда верно, мы будем его обозначать буквой И, а если оно всегда неверно, — буквой Л. Тогда формулы первого уровня — это элементарные высказывания, к которым применена только одна логическая связка.
Пусть Ф1 и Ф2 — формулы ненулевого уровня. Тогда записи (¬(Ф1)), ((Ф1)\vee(Ф2)), ((Ф1)\wedge(Ф2)), ((Ф1)→(Ф2)) также являются формулами. Если же одна из формул Ф1 и Ф2 , к которым применяется логическая связка, имеет нулевой уровень, то она в скобки не заключается.