Автор работы: Пользователь скрыл имя, 15 Апреля 2013 в 15:15, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Логика"
Значение энтимем состоит в том, что с их помощью достигается краткость, лаконичность и эффективность речи, т.к. заставляет слушателя, оппонента, читателя участвовать в рассуждении. Они выступают основой в ораторской, адвокатской практике. Так, древний афоризм: «Юпитер, ты сердишься, значит ты неправ» – это энтимема полного силлогизма с опущенной большей посылкой: «Всякий, кто сердится (в споре) – неправ, а Юпитер сердится, значит, он неправ».
Однако, энтимема, будучи эффективным приемом, таит в себе определенные опасности, именно в силу своей сокращенности: ошибки здесь встречаются не в тех суждениях, которые выражены явно, а в тех, которые опущены. Погрешность, некорректность мысли, выраженной энтимемой, становится явной в результате восстановления энтимемы до полного силлогизма. Поэтому овладение процедурой восстановления энтимем имеет важное значение. При восстановлении энтимемы в полный силлогизм следует руководствоваться следующим:
Проверим энтимему: «Ни один политик не является честным человеком, потому что все честные люди всегда говорят правду». В данной энтимеме присутствует заключение, оно стоит перед словами «потому что»: «Ни один политик (S) не является честным человеком (Р)». Находим в нем субъект («политик») и предикат («честный человек»). По субъекту и предикату заключения устанавливаем вид имеющейся посылки: «Все честные люди говорят правду». В ней находится предикат заключения, следовательно, это большая посылка. По понятию, выражающему субъект заключения, и среднему термину, выраженному вторым понятием имеющейся большой посылки, восстанавливаем пропущенную малую посылку, с учетом того, что заключение - отрицательное суждение (значит, одна из посылок должна быть отрицательной): «Ни один политик не может всегда говорить правду». Получаем полный силлогизм:
Все честные люди всегда говорят правду
Ни один политик не может всегда говорить правду
Ни один политик не является честным человеком
Он построен по второй фигуре, оба правила этой фигуры выполнены: большая посылка – общая; одна из них отрицательная. Значит этот силлогизм – правильный.
В практике мышления
человек оперирует
Чисто условное умозаключение – это умозаключение, в котором все посылки и заключение – условные суждения. Например:
Если данное деяние – мошенничество (А), то он преступление (В)
Если оно – преступление (В), то оно наказуемо по закону (С)
Если данное деяние – мошенничество (А), то оно наказуемо по закону (С)
Суть данного вида умозаключений, столь распространенных в нашем мышлении, состоит в том, что связь между посылками определяется наличием общего простого суждения (В) в посылках, выступающего в первой посылке в качестве следствия, а во второй посылке уже в качестве основания. Схема чисто условного умозаключения:
Если А, то В
Если В, то С
Если А, то С
Вывод
в чисто условном умозаключении
основывается на правиле транзитивности: следствие следствия есть следствие
основания. Используя обозначения
логических союзов (гл.3 §3), правильную
форму чисто условного умозаключения
символически можно выразить так:
((А В) (В С)) (А С).
Условно-категорическим называют умозаключение, в котором одна посылка – условное суждение, а вторая посылка и заключение – категорические суждения. Логическим основанием вывода в таком умозаключении служит определенная связь между основанием и следствием в условной посылке. Категорическая посылка может быть утвердительной и отрицательной по отношению к основанию или следствию условной посылки. Поэтому данное умозаключение имеет две разновидности, т.е. два модуса: (1) утверждающий и (2) отрицающий.
В утверждающем модусе условно-категорическое умозаключение правильно, если мысль идет от утверждения основания к утверждению следствия. Например: «Если идет дождь (А), то дорога – мокрая (В). Идет дождь (А), значит, дорога мокрая (В)». Но логически неправильно идти от утверждения следствия к утверждению основания. Например: «Если идет дождь (А), то дорога мокрая (В). Дорога мокрая (В), значит, идет дождь (А)». Здесь необходимого следствия нет, т.к. дорога может оказаться мокрой и без дождя.
В отрицающем модусе условно-категорическое умозаключение будет правильным, если мысль идет от отрицания следствия к отрицанию основания, но не наоборот. Например, правильно умозаключение: «Если идет дождь (А), то дорога мокрая (В). Дорога не мокрая (~В), значит нет дождя (~А)». Но логически неправильно умозаключение: «Если идет дождь (А), то дорога мокрая (В). Дождя нет (~А), значит дорога не мокрая (~В)». Дорога может оказаться мокрой и по другим причинам – однозначной, необходимой связи здесь нет.
Правильные формы условно-
Схема: Если А, то В Символически: ((А→В) А)→В
А
В
Схема: Если А, то В Символически: ((А→В) ~В)→ ~А
~ В
~ А
Правильность условно-
Разделительно-категорическое умозаключение – это умозаключение, в котором одна из посылок - разделительное суждение, а вторая посылка и заключение – категорические суждения. В зависимости от вида категорической посылки – утвердительная она или отрицательная – выделяют два модуса разделительного категорического умозаключения: (1) утверждающе–отрицающий и (2) отрицающе-утверждающий. При утверждающе-отрицающем модусе мысль направляется от утверждения одной из мыслимых альтернатив разделительной посылки к отрицанию другой. Например: «Облигации могут быть предъявительскими (А) или именными (В). Данная облигация предъявительская (А), следовательно, она не именная (~В)». При этом, должно быть выполнено требование: разделительная посылка должна представлять строгую дизъюнкцию, т.е. альтернативы должны исключать друг друга, как в данном примере.
Правильные
формы утверждающе-отрицающего модуса
разделительно-категорического умозаключения
можно символически записать так: ((А
В отрицающе-утверждающем модусе разделительно-категорического умозаключения мысль следует от отрицания одного из вариантов разделительной посылки к утверждению другого. Например: «Суждения могут быть простыми или сложными. Суждение «Все цветы - растения» - простое, следовательно, оно не сложное». Условием правильности этого модуса разделительно-категорического умозаключения является необходимость полной дизъюнкции, т.е. в разделительном суждении должны быть перечислены все рассматриваемые альтернативы. В случае нарушения этого условия в рассуждении возможны логические ошибки.
Правильные логические формы отрицающе-утверждающего модуса разделительно-категорического умозаключения символически можно записать так:
((А
Условно-разделительное умозаключение – это умозаключение с несколькими условными и одной разделительной посылками, заключение же может быть разделительным или категорическим суждением. Например:
Если вред причинен личности гражданина (А), то он подлежит возмещения в полном объеме (С)
Если вред причинен имуществу гражданина (В), то он подлежит возмещения в полном объеме (С)
Но вред причинен или личности (А) или имуществу гражданина (В)
В любом случае он подлежит возмещению в полном объеме (С).
Символически:
Еще пример: «Если ты будешь говорить правду (А), то тебя возненавидят богатые (С). Если ты будешь лгать (В), то тебя возненавидит простой народ (D). Но ты должен говорить правду (А) или лгать (В). Значит тебя возненавидят богатые (С) или возненавидит простой народ (D)».
Символически:
Правила, которым
подчиняются условно-
(1) ((А→С) (В→С)) (А В) → С
(2) ((А→С) (В→D)) (А В) → (С D)
(3) ((А→В) (А→С)) (~В ~С) → ~А
(4) ((А→С) (В→D)) (~С ~D) → (~А ~В)
Определение правильности умозаключений из сложных суждений основывается на знании их правильных форм и сопоставлении логической формы проверяемого умозаключения с правильной формой данного вида умозаключения.
Для проверки правильности умозаключений из сложных суждений, не сводимых к перечисленным видам, используется табличный метод, основанный на том, что между посылками и заключением в дедуктивном умозаключении должно существовать отношение логического следования, означающее, что заключение не может быть ложным, если все посылки истинны.
Возьмем умозаключение: «Студенты этого факультета способны и прилежны. Если они прилежны, то регулярно занимаются. Значит, если они не занимаются регулярно, то они способны». Проверим, правильно ли оно. Для этого символически выразим его форму: ((А В) (В→С))├ (~С→А), где А обозначает «студент этого факультета способен», В – «студент этого факультета прилежен», С – «студент регулярно занимается», знак «├» обозначает «следует» (перед ним записываются посылки, после него – заключение).
Построим общую
таблицу для этого
№ |
А |
В |
С |
~С |
А |
В→С |
~С→А |
1 |
и |
и |
и |
л |
и |
и |
и |
2 |
и |
и |
л |
и |
и |
л |
и |
3 |
и |
л |
и |
л |
и |
и |
и |
4 |
и |
л |
л |
и |
и |
и |
и |
5 |
л |
и |
и |
л |
и |
и |
и |
6 |
л |
и |
л |
и |
и |
л |
л |
7 |
л |
л |
и |
л |
л |
и |
и |
8 |
л |
л |
л |
и |
л |
и |
л |
В этой таблице для нас интересны строки, где обе посылки: (А В) и (В→С) вместе истинны. Это строки: 1, 3, 4, 5. Смотрим, не получается ли заключение (~С→А) ложным хотя бы в одной из этих строк. Нет, заключение везде в этих строках тоже истинно. Значит умозаключение правильно.
Важнейшее свойство недедуктивных умозаключений – отсутствие логического следования заключений из посылок. Между посылками и заключением этих умозаключений иная логическая связь: частичная совместимость, отношение подтверждения. Если при отношении следования истинность посылок гарантирует истинность заключения, то при отношении подтверждения (частичной совместимости) истинность посылок не исключает истинность заключения, но оно имеет не достоверный, а вероятный характер.