Понятие, суждение, умозаключение

Автор работы: Пользователь скрыл имя, 01 Ноября 2013 в 12:47, реферат

Краткое описание

Знание логики повышает культуру мышления, вырабатывает навык мыслить более “грамотно”, развивает критическое отношение к своим и чужим мыслям.
Основными формами мышления являются понятие, суждение и умозаключение.

Содержание

Введение....................................................................................................3
1. Понятие...........................................................................................4
2. Суждение.......................................................................................12
3. Умозаключение..............................................................................18
Заключение...........................................................................................28
Список литературы................................................................................30

Прикрепленные файлы: 1 файл

referat_logica.doc

— 152.00 Кб (Скачать документ)

Уточнив понятия, мы можем сказать о двух суждениях, одно из которых является отрицанием другого, что одно из них обязательно истинно, т.е. третьего не дано.

Умозаключение

 

Умозаключение — это способ получения нового знания на основе некоторого имеющегося.

Он представляет собой переход от некоторых высказываний, фиксирующих наличие некоторых ситуаций в действительности, к новому высказыванию и соответственно к знанию о наличии ситуации, которую описывает это высказывание. Например, в механике известно, что у всякого тела, плотность которого одинакова во всех его частях, геометрический центр и центр тяжести совпадают. Известно также (в результате астрономических наблюдений), что у Земли эти центры не совпадают. Отсюда естественно заключить, что плотность Земли не является одинаковой во всех ее частях. Едва ли нужно специально говорить о значении этой операции в познавательной и практической деятельности. Посредством умозаключений мы получаем приращение знаний, не обращаясь к исследованию предметов и явлений самой действительности, имеем возможность открывать такие связи и отношения действительности, которые невозможно усмотреть непосредственно.

Переход от некоторых  высказываний (посылок умозаключения) к высказыванию (заключению) в умозаключении  может совершаться на основе интуитивного усмотрения какой-то связи - такие умозаключения называют содержательными; или путем логического выведения одного высказывания из других - это умозаключения формально-логического характера. В первом случае оно представляет собой, по существу, психический акт. Во втором случае его можно рассматривать как определенную логическую операцию. Последняя и является предметом изучения логики.

Содержание  умозаключения может быть более  или менее развернутым. Так, из того, что над землей низко летают ласточки, люди заключают часто, что завтра будет плохая погода. Это умозаключение можно развернуть, выясняя, в чем именно состоит связь между ситуацией, которая фиксируется в посылке, и той, на которую указывает заключение. А именно, если объяснить, почему одно из наблюдаемых явлений (низкий полет ласточек) указывает на существование другого (будет плохая погода). В результате анализа получаем последовательность переходов от одних явлений к другим: ласточки летают низко потому, что мошкара, за которой они охотятся, летает низко над землей. А это происходит в свою очередь потому, что в воздухе имеется повышенная влажность, от которой насекомые намокают и опускаются к земле. Наличие же повышенной влажности предвещает дождь, а, следовательно, и ненастье. Как видим, при развертывании исходного умозаключения появляются новые посылки. Кстати, полезно обратить внимание, что в данном случае движение мысли идет в основном от следствий явлений к их причинам. Это полезно заметить потому, что в учебниках по логике нередко можно найти утверждение, что в наших содержательных рассуждениях движение мысли происходит от причин к их следствиям. Как видим, это не всегда так. Таким образом, отношение между посылками и заключением отличается от отношения причина - следствие.

В содержательных умозаключениях мы оперируем, по существу, не с самими высказываниями, а прослеживаем связь между ситуациями действительности, которые эти высказывания представляют. Это и отличает содержательные умозаключения от умозаключений как операций логического характера, называемых иногда формализованными умозаключениями. В этих умозаключениях операции совершаются именно над высказываниями самими по себе, причем по правилам, которые вообще не зависят от конкретного содержания высказываний, т.е. от значения дескриптивных терминов. Для их применения необходимо учитывать лишь логические формы высказываний. Благодаря этому для умозаключений этого типа мы имеем также четкие критерии их правильности или неправильности. Тогда как для содержательных умозаключений нет никаких определенных критериев этого рода и всегда возможен спор - рассуждает ли человек правильно или нет. Именно формализованные умозаключения являются предметом изучения логики. И именно их мы имеем в виду в дальнейшем.

Переход от содержательного  умозаключения к формально-алогическому, т.е. формализация умозаключений, осуществляется посредством выявления - и явной фиксации ее в виде высказываний - всей информации, которая явно или неявно используется в содержательном рассуждении. Так, в примере с ласточками неявно используемая информация может быть выражена в общих суждениях: «Всегда, когда мошкара опускается к земле, опускаются и ласточки, охотящиеся за ней», «Всегда, когда намокает волосяной покров насекомого, то оно опускается к земле» и т.п. При решении того или иного уравнения, процесс которого представляет, собой содержательное рассуждение, также подразумеваются какие-либо посылки - общие утверждения специально-математического, а не логического характера, например: «Если к обеим частям уравнения прибавить (или вычесть) одно и то же число, то равенство сохраняется. Равенство сохраняется также при умножении обеих частей на одно и то же число и при делении их на одно и то же число, отличное от нуля».

 

Структура и основные виды умозаключений

 

В умозаключении  различают посылки - высказывания, представляющие исходное знание, и заключение - высказывание, к которому мы приходим в результате умозаключения.

В естественном языке существуют слова и словосочетания, указывающие как на заключение («значит», «следовательно», «отсюда видно», «поэтому», «из этого можно сделать вывод» и т.п.), так и на посылки умозаключения («так как», «поскольку», «ибо», «принимая во внимание, что...», «ведь» и т.п.). Представляя суждение в некоторой стандартной форме, в логике принято указывать вначале посылки, а потом заключение, хотя в естественном языке их порядок может быть произвольным: вначале заключение - потом посылки; заключение может находиться «между посылками». В приведенном в начале главы примере посылками служат два первых высказывания, а заключением - третье высказывание («плотность Земли не одинакова во всех ее частях»),

Понятие умозаключения  как логической операции тесно связано  с понятием логического следования. Учитывая эту связь, мы различаем правильные и неправильные умозаключения.

Умозаключение, представляющее собой переход от посылок к заключению, является правильным, если между посылками и заключением  имеется отношение логического  следования. В противном случае - если между посылками и заключением  нет такого отношения - умозаключение неправильно.

Естественно, что логику интересуют лишь правильные умозаключения. Что же касается неправильных, то они привлекают внимание логики лишь с точки зрения выявления  возможных ошибок.

В делении  умозаключений на правильные и неправильные мы должны различать отношение логического следования двух видов – дедуктивное и индуктивное. Первое гарантирует истинность заключения при истинности посылок. Второе - при истинности посылок - обеспечивает лишь некоторую степень правдоподобия заключения (некоторую вероятность его истинности). Соответственно этому умозаключения делятся на дедуктивные и индуктивные. Первые иначе еще называют демонстративными (достоверными), а вторые - правдоподобными (проблематичными).

Дедуктивные умозаключения

 

В определении дедукции в логике выявляются два подхода:

1. В традиционной (не  в математической) логике дедукцией  называют умозаключение от знания  большей степени общности i к новому  знанию меньшей степени общности. Впервые теория  дедукции в этом плане была обстоятельно разработана Аристотелем;                                                

2. В современной математической  логике дедукцией называется  умозаключение, дающее достоверное  (истинное) суждение. Четкая фиксация  существенного различия классического и  современного понимания дедукции особенно важна для решения методологических вопросов. Для различения двух смыслов  дедукции можно классическое понимание обозначить термином  “дедукция1” (сокращенно Д1), а современное - “дедукция2” (Д2).  Правильно построенному дедуктивному умозаключению присущ необходимый характер логического следования заключения из данных посылок. Обобщая сказанное, можно дать такое определение.

Дедуктивные умозаключения - те умозаключения, у которых между посылками и заключением имеется отношение логического следования.                                   

Определение дедуктивного умозаключения, данного в традиционной логике (т. е. Д1), - частный случай этого  определения через логическое следование.

 Пример:

Все перепончатокрылые - насекомые.

Все пчелы - перепончатокрылые.

Все пчелы - насекомые.

Здесь первая посылка  “Все перепончатокрылые - насекомые” является общеутвердительным суждением  и выражает большую степень обобщения  по сравнению с заключением, также  являющимся общеутвердительным суждением: “Все пчелы - насекомые”. Мы строим умозаключение от признака, принадлежащего роду (“перепончатокрылые”), к его принадлежности к виду - “пчела”, т. е. от общего класса к его частному случаю, к подклассу. Частный случай при этом не надо путать с частными суждениями вида “Некоторые S суть Р” или “Некоторые S не суть Р”.

 

 

 Индуктивные умозаключения и их виды

Логическая природа индукции

 

Дедуктивные умозаключения позволяют выводить из истинных посылок при соблюдении соответствующих правил истинные заключения. Индуктивные умозаключения обычно дают нам не достоверные, а лишь правдоподобные заключения.

В определении  индукции в логике выявляются два  подхода -первый, осуществляемый в традиционной (не в математической) логике, в которой индукцией называется умозаключение от знания меньшей степени общности к новому знанию большей степени общности (т. е. от отдельных частных случаев мы переходим к общему суждению). При втором подходе, присущем современной математической логике, индукцией называется умозаключение, дающее вероятностное суждение.

Общее в природе  и обществе не существует самостоятельно, до и вне отдельного, а отдельное  не существует без общего; общее  существует в отдельном, через отдельное, т. е. проявляется в конкретных предметах. Поэтому общее, существенное, повторяющееся и закономерное в предметах познается через изучение отдельного, и одним из средств познания общего выступает индукция. В зависимости от избранного основания выделяют индукцию полную и неполную. По другому основанию выделяют математическую индукцию.

Полной индукцией называется такое умозаключение, в котором общее заключение о всех элементах класса предметов делается на основании рассмотрения каждого элемента этого класса. В полной индукции изучаются все предметы данного класса, а посылками служат единичные суждения. Например:

Земля вращается  вокруг Солнца по эллиптической орбите.

Марс вращается  вокруг Солнца по эллиптической орбите.

Юпитер вращается  вокруг Солнца по эллиптической орбите.

Сатурн вращается  вокруг Солнца по эллиптической орбите.

Плутон вращается  вокруг Солнца по эллиптической орбите.

Венера вращается  вокруг Солнца по эллиптической орбите.

Уран вращается  вокруг Солнца по эллиптической орбите.

Нептун вращается  вокруг Солнца по эллиптической орбите.

Меркурий вращается вокруг Солнца по эллиптической орбите.

Земля, Марс, Юпитер, Сатурн, Плутон, Венера, Уран, Нептун, Меркурий -планеты Солнечной системы.

Все планеты  Солнечной системы вращаются  вокруг Солнца по эллиптической орбите.

Посылками в  полной индукции могут быть и общие суждения. Например:

Все моржи - водные млекопитающие.

Все ушастые  тюлени - водные млекопитающие.

Все настоящие  тюлени - водные млекопитающие.

Моржи, ушастые  тюлени, настоящие тюлени представляют семейство ластоногих.

Все ластоногие - водные млекопитающие.

Полная индукция дает достоверное заключение, поэтому  она часто применяется в математических и в других самых строгих доказательствах. Чтобы использовать полную индукцию, надо выполнить следующие условия:

1. Точно знать  число предметов или явлений, подлежащих рассмотрению.

2. Убедиться,  что признак принадлежит каждому  элементу этого класса.

3. Число элементов  изучаемого класса должно быть  невелико.

Математическая индукция

Это один из важнейших  методов доказательства в математике, основанный на аксиоме (принципе) математической индукции. Пусть: 1) свойство А имеет место при п = 1; 2) из предположения о том, что свойством А обладает какое-либо натуральное число n, следует, что этим свойством А обладает и число n + 1. Тогда делаем заключение, что свойством А обладает любое натуральное число.

Математическая  индукция используется при выведении  ряда формул: арифметической и геометрической прогрессий, бинома Ньютона и др.

  Неполная индукция

Неполная индукция применяется в тех случаях, когда  мы, во-первых, не можем рассмотреть все элементы интересующего нас класса явлений; во-вторых, если число объектов либо бесконечно, либо конечно, но достаточно велико; в-третьих, когда рассмотрение уничтожает объект (например: “Все деревья имеют корни”). Тогда мы рассматриваем не все случаи изучаемого явления, а заключение делаем для всех. Например, при нагревании мы наблюдаем расширение азота, кислорода, водорода и делаем заключение, что все газы при нагревании расширяются. Один из видов неполной индукции - научная индукция - имеет очень большое значение, так как позволяет формулировать общие суждения.

Информация о работе Понятие, суждение, умозаключение