Автор работы: Пользователь скрыл имя, 17 Декабря 2011 в 09:39, контрольная работа
Доказательство - это логическая операция по обоснованию истинности суждений с помощью других истинных суждений.
Структура доказательства: Что доказывается; Чем доказывается выдвинутое положение; Как оно доказывается? Ответы на эти вопросы раскрывают: Тезис, Аргументы, Демонстрация.
I Понятие доказательства
II. Понятие опровержения
III.Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
Логические основы теории аргументации. Доказательство и опровержение
Доказательство - это логическая операция по обоснованию истинности суждений с помощью других истинных суждений.
Структура доказательства: Что доказывается; Чем доказывается выдвинутое положение; Как оно доказывается? Ответы на эти вопросы раскрывают: Тезис, Аргументы, Демонстрация.
Тезис - это выдвинутое пропонентом суждение, которое он обосновывает в процессе аргументации. Тезис является главным структурным элементом аргументации и отвечает на вопрос: что обосновывают. Аргументы - это исходные теоретические или фактические положения, с помощью которых обосновывают тезис. Они выполняют роль основания, или логического фундамента аргументации, и отвечают на вопрос: чем, с помощью чего ведется, обоснования тезиса? Демонстрация - это логическая форма построения доказательства, которое, как правило, имеет форму дедуктивного умозаключения. Аргументация всегда должна быть истинной, в то время как заключение не всегда.
Существует два вида доказательств: прямые и непрямые (косвенные) :
1.Прямые - тезис логически следует из аргументов.
2. Непрямые (косвенные) - это такие доказательства, в которых истинность выдвигаемого тезиса обосновывается путём доказательства ложности антитезиса
Прямое доказательство идет от рассмотрения аргументов к доказательству тезиса, т. е. истинность тезиса непосредственно обосновывается аргументами. Схема этого доказательства такая: из данных аргументов (а, b, с, ...) необходимо следует доказываемый тезис q. По этому типу проводятся доказательства в судебной практике, в науке, в полемике, в сочи нениях школьников, при изложении материала учителем и т. д.
Широко используется прямое доказательство в статистических отчетах, в различного рода документах, в постановлениях, в художественной и другой литературе. Приведем пример прямого доказательства, использованного И. А. Буниным в стихе творении “В степи”:
А к нам идет угрюмая зима:
Засохла степь, лес глохнет и желтеет,
Осенний ветер, тучи нагоняя,
Открыл в кустах звериные лазы,
Листвой засыпал долы и овраги,
И по ночам в их черной темноте,
Под шум деревьев, свечками мерцают,
Таинственно блуждая, волчьи очи...
Да, край родной не радует теперь!
Чтобы обосновать тезис: “Труд доктора - действительно самый производительный труд”, Н. Г. Чернышевский использует прямое доказательство с помощью таких аргументов: предохраняя или восстанавливая здоровье, доктор приобретает обществу все те силы, которые погибли бы без его забот.
Учитель на уроке при прямом доказательстве тезиса “Народ -творец истории”, показывает; во-первых, что народ является создателем материальных благ, во-вторых, обосновывает огромную роль народных масс в политике, разъясняет, как в современную эпоху народ ведет активную борьбу за мир и демократию, в-третьих, раскрывает его большую роль в создании духовной культуры.
На уроках химии
прямое доказательство о горючести
сахара может быть представлено в
форме категорического
Все углеводы - горючи.
Сахар - углевод.
Сахар горюч.
В современном журнале мод “Бурда” тезис “Зависть - корень всех зол” обосновывается с помощью прямого доказательства следующими аргументами: “Зависть не только отравляет людям повседневную жизнь, но может привести и к более серьезным последствиям, поэтому наряду с ревностью, злобой и ненавистью, несомненно, относится к самым плохим чертам характера.
Подкравшись незаметно, зависть ранит больно и глубоко. Человек завидует благополучию других, мучается от сознания того, что кому-то более повезло”1.
Непрямое
(косвенное) доказательство - это доказательство,
в котором истинность выдвинутого тезиса
обосновывается путем доказательства
ложности антитезиса. Если тезис об значить
буквой а, то его отрицание (
) будет антитезисом, т.е. противоречащим
тезису суждением.
Они делятся на два вида:
-Доказательства от противного, осуществляется путём установления ложности суждения противоречащего тезису. Предполагается истинности антитезиса и из него выводится следствие, если хотя бы одно из полученных следствий противоречит либо посылке, или другому следствию, истинность которого уже установлена, то данное следствие, а за ним и антитезис предполагается ложным.
Пусть а -тезис или теорема, которую надо доказать. Предполагаем от противного, что а ложно, т. е. истинно не-а (или ). Из допущения выводим следствия, которые противоречат действительности или ранее доказанным теоремам. Имеем а , при этом - ложно, значит, истинно его отрицание, т.е. , которое по закону двузначной классической логики ( →а) дает а. Значит, истинно а, что и требовалось доказать.
Следует заметить, что в конструктивной логике формула →а не является выводимой, поэтому в этой логике и в конструктивной математике ею пользоваться в доказательствах нельзя. Закон исключенного третьего здесь также “отвергается” является выводимой формулой), поэтому косвенные доказательства здесь не применяются. Примеров доказательства “от противного” очень много в школьном курсе математики. Так, пример, доказывается теорема о том, что из точки, лежащей вне прямой, на эту прямую можно опустить лишь один перпендикуляр. Методом “от противного” доказывается и следующая теорема: “Если две прямые перпендикулярны к одной и той же плоскости, то они параллельны”. Доказательство этой теоремы пpямо начинается словами: “Предположим противное, т. е. что прямые АВ и CD не параллельны”.
-Разделительные доказательства, метод исключения. Устанавливается ложность всех членов дизъюнкции, кроме одного, который является обоснованным тезисом.
например:
Преступление мог совершить либо А, либо В, либо С.
Доказано, что не совершали преступление ни А, ни В.
Преступление совершил С.
Истинность тезиса
устанавливается путем
Здесь применяется
структура отрицающе-
a
b c d; ^ ^ ^
d
Как отмечалось ранее, в этом модусе союз “или” может употребляться и как строгая дизъюнкция (\/ ), и как нестрогая дизъюнкция (ύ), поэтому ему отвечает также схема:
a ύ
b ύ c ύ d;
—————-------------------------
Как было сказано выше в любом доказательстве имеется три компонента: тезис, аргументы и демонстрация. В принципе строение доказательства повторяет структуру умозаключения. Там тоже имеется тезис, получаемый в виде вывода из посылок-аргументов, а само умозаключение в целом есть аналог демонстрации. Только в доказательстве демонстрация может представлять собой длинную цепь умозаключений, из которых слагается более или менее пространное рассуждение или, может быть, большая теорема. Кроме того, и это еще важнее, доказательство, как на это верно указал когда-то В.Ф. Асмус в своем учебнике логики, есть, по сути дела, умозаключение об умозаключении, о том, что оно построено в соответствии с правилами логики, его посылки верны и, следовательно, сделанные в нем выводы надо признать истинными суждениями. Дело в том, что само умозаключение этого еще не обеспечивает. Допустим, перед нами такое рассуждение: струнные музыкальные инструменты подразделяются на щипковые и смычковые; рояль - не смычковый инструмент; значит рояль относится к щипковым инструментам. Можно ли считать обоснованным вывод, полученный с помощью этого разделительно-категорического силлогизма? Очевидно, нет. Потому что для этого надо еще и знать, являются ли посылки верными и соблюдены ли правила таких силлогизмов, в частности, требование указывать все возможные альтернативы; в данном случае оно, кстати, не выполнено, так как существуют еще и ударно-клавишные струнные инструменты, к числу которых относится и рояль. Итоговое оценочное умозаключение может не высказываться прямо, а всего лишь подразумеваться, как это часто бывает со многими другими компонентами рассуждений. Но, по существу, оно всегда представляет собой условно-категорический силлогизм, уже известный нам modus ponens. Его первая, условная, посылка: если аргументы являются истинными суждениями, а умозаключение построено правильно, то тогда его вывод есть истинное (доказанное) суждение; вторая, категорическая: аргументы истинны, умозаключение правильно. Отсюда вытекает вывод о непреложной истинности тезиса. Таким образом, весь процесс доказательства в соответствии с его структурой распадается на три стадии: формулировка тезиса, подыскание аргументов, удовлетворяющих ряду специальных требований, и затем построение демонстрации и ее проверка. Можно выделить и еще одну, четвертую - образование оценочного условно-категорического силлогизма. Но его подготовка в любом случае растворяется в первых трех стадиях. Сам же modus ponens настолько прост, что после завершения работы на предыдущих стадиях его отдельная формулировка делается излишней. Результат проверки, конечно, может оказаться и отрицательным. Ведь нельзя исключать того, что доказательство проведено с ошибками. Тогда мы будем иметь дело уже с каким-нибудь вариантом опровержения.
Приведем пример доказательства. Поль С. Брэгг высказал такой тезис: «Купить здоровье нельзя, его можно только зарабо-тать своими собственными постоянными усилиями». Этот тезис он обосновывает так: «Только упорная и настойчивая работа над собой позволит каждому сделать себя энергичным долгожителем, наслаждающимся бесконечным здоровьем. Я сам заработал здо-ровье своей жизнью. Я здоров 365 дней в году, у меня не бывает никаких болей, усталости, дряхлости тела. И вы можете добиться таких же результатов!»2
Различают несколько видов аргументов:
1. Удостоверенные единичные факты. К такого рода аргументам относится так называемый фактический материал, т. е. статистические данные о населении, территории государства, выполнении плана, количестве вооружения, свидетельские показания, подписи на документах, научные данные, научные факты. Роль фактов в обосновании выдвинутых положений, в том числе научных, велика. Ценой десятков тысяч проведенных опытов, сбора научных фактов И. В. Мичурин создал стройную систему выведения новых сортов растений. Сначала он увлекся работами по акклиматизации изнеженных южных и западноевропейских плодовых культур в условиях средней полосы России. Путем гибридизации он сумел создать свыше 300 сортов плодовых и ягодных культур. Это яркий пример того, как подлинный ученый собирает и обрабатывает огромный научный фактический материал.
2. Определения
как аргументы доказательства. Определения
понятий обычно даются в
3. Аксиомы. В математике, механике, теоретической физике, математической логике и других науках, кроме определений, вводят аксиомы. Аксиомы -- это суждения, которые принимаются в качестве аргументов без доказательства.
4. Ранее доказанные законы науки и теоремы как аргументы доказательства.
II. Понятие опровержения
Опровержение - логическая операция установления ложности или необоснованности ранее выдвинутого тезиса.
Опровержение должно показать, что: 1) неправильно построено само доказательство (аргументы или демонстрация); 2) выдвинутый тезис ложен или не доказан.
Суждение, которое надо опровергнуть, называется тезисом опровержения. Суждения, с помощью которых опровергается тезис, называются аргументами опровержения,
Информация о работе Логические основы теории аргументации. Доказательство и опровержение