Автор работы: Пользователь скрыл имя, 22 Февраля 2014 в 19:37, контрольная работа
стория науки показывает, что многие открытия в микроэкономике были сделаны на основе индуктивного обобщения эмпирических данных. Индуктивная обработка результатов наблюдений предшествовала классификации спроса и предложения. Индуктивным обобщениям обязаны многие гипотезы в современной науке. Полнота и законченность опыта влияют на строгость логического следования в индукции, предопределяя, в конечном счете, демонстративность или недемонстративность этих умозаключений. В зависимости от полноты и законченности эмпирического исследования различают два вида индуктивных умозаключений: полную индукцию и неполную индукцию. Рассмотрим их особенности.
Введение………………………………………………………………
1. Индукция и ее виды………………………………………
1.1. Полная индукция………………………………………………….
1.2. Неполная индукция. Популярная индукция
1.3. Научная индукция
2. Методы научной индукции………………………………..
2.1. Метод сходства………………………………………………….
2.2. Метод различия………………………………………………….
2.3. Соединенный метод сходства и различия
2.4. Метод сопутствующих изменений
2.5. Метод остатков
Заключение
Библиографический список…………………………………………..
Например, уменьшение цены на продукцию при падении спроса уменьшается до определенной точки, а затем цена при дальнейшем падении спроса увеличивается. Другой пример: медицине хорошо известны лечебные свойства препаратов, содержащих в малых дозах яды. С увеличением дозы полезность препарата растет лишь до определенного предела. За пределами шкалы интенсивности препарат действует в обратном направлении и становится опасным для здоровья.
Любой процесс количественных изменений имеет свои критические точки, которые следует учитывать при применении метода сопутствующих изменений, эффективно действующего лишь в рамках шкалы интенсивности. Использование метода без учета пограничных зон количественных изменений может приводить к логически некорректным результатам.
2.5. Метод остатков
Применение метода связано с установлением причины, вызывающей определенную часть сложного действия при условии, что причины, вызывающие другие части этого действия, уже выявлены.
Методом остатков был сделан вывод о существовании некоторых химических элементов — гелия, рубидия и др. Предположение основывалось на результатах, полученных в процессе спектрального анализа: были обнаружены новые линии, которые не принадлежали ни одному из уже известных химических элементов.
Подобно другим индуктивным выводам метод остатков дает, как правило, проблематичное знание. Степень вероятности заключения в таком выводе определяется, во-первых, точностью знаний о предшествующих обстоятельствах, среди которых идет поиск причины исследуемого явления, во-вторых, точностью знания о степени влияния каждой из известных причин на совокупный результат. Приблизительный и неточный перечень предшествующих обстоятельств, как и неточное представление о влиянии каждой из известных причин на совокупное действие, может привести к тому, что в заключении вывода в качестве неизвестной причины будет представлено не необходимое, а лишь сопутствующее обстоятельство.
Рассуждения по методу остатков нередко используются в процессе расследования преступлений, главным образом в тех случаях, когда устанавливают явную несоразмерность причин исследуемым действиям. Если действие по своему объему, масштабу или интенсивности не соответствует известной причине, то ставится вопрос о существовании каких-то других обстоятельств.
Рассмотренные методы установления причинных связей по своей логической структуре относятся к сложным рассуждениям, в которых собственно индуктивные обобщения строятся с участием дедуктивных выводов. Опираясь на свойства причинной связи, дедукция выступает логическим средством элиминации (исключения) случайных обстоятельств, тем самым она логически корректирует и направляет индуктивное обобщение.
Взаимосвязь индукции и дедукции обеспечивает логическую состоятельность рассуждений при применении методов, а точность выраженного в посылках знания определяет степень обоснованности получаемых заключений.
ЗАКЛЮЧЕНИЕ
Особым видом умозаключений неполной индукции являются статистические обобщения, связанные с анализом массовых событий. К ним относятся, например, массовые транспортные перевозки пассажиров и грузов, рождаемость и смертность людей, распространение заболеваний, транспортные происшествия, динамика преступлений и многие другие.
Учитывая трудности
выявления причинных зависимост
Статистическое обобщение
— это умозаключение неполной
индукции, в котором установленная
в посылках количественная информация
о частоте определенного
В отличие от индукции
через перечисление при отсутствии
противоречащего случая в посылках
статистического умозаключения
фиксируется следующая
Частота появления признака р (f(p) – частота признака) в образце S представляет собой отношение числа благоприятных случаев n к общему числу исследованных явлений m:
f(p) = n/m.
Так, например, статистическая информация о посещаемости студентов на пары, показывает, что 95 из 100 случаев посещаемость зависит от преподавателя и наличия зачета. Значит, при злом преподователе и наличии зачета посещаемость определяется как 95/100, т.е. равна 95%.
Статистическое обобщение, будучи выводом неполной индукции, относится к недемонстративным умозаключениям. Логический переход от посылок к заключению дает здесь лишь проблематичное знание. Степень обоснованности статистическою обобщения зависит от специфики исследованного образца: его величины по отношению к популяции и представительности (репрезентативности). Если образец по объему приближается к популяции, тем основательнее обобщение, поскольку возможность ошибки становится минимальной. Репрезентативность образца означает меру его представительности: насколько разнообразие элементов в образце отражает их разнообразие в популяции.
Тщательность статистического описания исследуемого образца и логически корректный перенос частоты признака на популяцию обеспечивают высокую вероятность и тем самым практическую эффективность статистических обобщений в различных областях науки, культуры, производства, правовой деятельности.
Каждый из методов научной индукции не обладает абсолютной доказательной силой. Тем не менее, в сочетании с другими научными приемами и правилами степень достоверности их результатов может повышаться неограниченно. Любая истина, каким бы путем она ни была получена, не гарантирована от критического пересмотра в последующем. Результаты научной индукции не составляют тут исключения. Поэтому, в конечном счете, методы научной индукции плодотворны, доказательны и на своем месте незаменимы.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
Информация о работе Индукция и ее виды. Методы научной индукции