Игры с природой в условиях неопределенности

Автор работы: Пользователь скрыл имя, 22 Декабря 2014 в 17:57, реферат

Краткое описание

В реальных экономических условиях приходится решать отдельные задачи при ограниченности, неточности исходной информации о самом объекте и внешней среде, в которой он функционирует и развивается. При принятии управленческих решений о функционировании и развитии экономического объекта необходимо учитывать важную характеристику внешней среды - неопределенность.
Неопределенность – это отсутствие, неполнота, недостаточность информации об объекте, процессе, явлении или неуверенность в достоверности информации.лении или неуверенность в достоверности информации.

Прикрепленные файлы: 1 файл

ТПР.doc

— 174.00 Кб (Скачать документ)

Риском игрока rij при выборе стратегии i в условиях (состояниях) природы j называется разность между максимальным выигрышем, который можно получить в этих условиях и выигрышем, который получит игрок в тех же условиях, применяя стратегию i.

Если бы игрок знал заранее будущее состояние природы j, он выбрал бы стратегию, которой соответствует максимальный элемент в данном столбце: , и тогда риск: .

Критерий Сэвиджа рекомендует в условиях неопределенности выбирать решение, обеспечивающее минимальное значение максимального риска:

ZS= .      (7)

Критерий Лапласа.

В ряде случаев представляется правдоподобным следующее рассуждение: поскольку неизвестны будущие состояния природы, постольку можно считать их равновероятными. Этот подход к решению используется в критерии “недостаточного основания” Лапласа.

Для решения задачи для каждого решения подсчитывается математическое ожидание выигрыша (вероятности состояний природы полагаются равными qj = 1/n, j = 1:n), и выбирается то решение, при котором величина этого выигрыша максимальна.

ZL=

.

Гипотеза о равновероятности состояний природы является довольно искусственной, поэтому принципом Лапласа можно пользоваться лишь в ограниченных случаях. В более общем случае следует считать, что состояния природы не равновероятны и использовать для решения критерий Байеса-Лапласа.

Критерий Байеса-Лапласа.

Этот критерий отступает от условий полной неопределенности - он предполагает, что возможным состояниям природы можно приписать определенную вероятность их наступления и, определив математическое ожидание выигрыша для каждого решения, выбрать то, которое обеспечивает наибольшее значение выигрыша:

ZBL= .

Этот метод предполагает возможность использования какой-либо предварительной информации о состояниях природы. При этом предполагается как повторяемость состояний природы, так и повторяемость решений, и, прежде всего, наличие достаточно достоверных данных о прошлых состояниях природы. То есть, основываясь на предыдущих наблюдениях прогнозировать будущее состояние природы (статистический принцип).

Критерий Байеса-Лапласа предъявляет к ситуации, в которой принимается решение, следующие требования:

  • вероятности появления состояний Вj известны и не зависят от времени;
  • решение реализуется (теоретически) бесконечно много раз;
  • для малого числа реализаций решения допускается некоторый риск.

При достаточно большом количестве реализаций среднее значение постепенно стабилизируется. Поэтому при полной (бесконечной) реализации какой-либо риск исключён.

Исходная позиция применяющего – критерий оптимистичнее, чем в случае критерия Вальда, однако она предполагает более высокий уровень информированности и достаточно длинные реализации.

Перечисленные критерии не исчерпывают всего многообразия критериев выбора решения в условиях неопределенности, в частности, критериев выбора наилучших смешанных стратегий, однако и этого достаточно, чтобы проблема выбора решения стала неоднозначной:

Выбор критерия (как и выбор принципа оптимальности) является наиболее трудной и ответственной задачей в теории принятия решений. Однако конкретная ситуация никогда не бывает настолько неопределенной, чтобы нельзя было получить хотя бы частичной информации относительно вероятностного распределения состояний природы. В этом случае, оценив распределение вероятностей состояний природы, применяют метод Байеса-Лапласа, либо проводят эксперимент, позволяющий уточнить поведение природы.

 

  1. Практическая часть.

Выпуск продукции фирмы существенно зависит от скоропортящегося материала, например, молока или ягод, поставляемого партиями стоимостью 100ед. Если поставка не прибывает в срок, фирма теряет 400 ед. от недовыпуска продукции. Фирма может послать к поставщику свой транспорт (расходы 50 ед.), однако опыт показывает, что в половине случаев транспорт возвращается ни с чем. Можно увеличить вероятность получения материала до 80%, если предварительно послать своего  представителя, но расходы увеличатся еще на 50 ед. Существует возможность приобретать более дорогой (на 50%) материал-заменитель у другого, вполне надежного поставщика, однако, кроме расходов на транспорт (50 ед.) возможны дополнительные издержки хранения материала в размере 30 ед., если его  количество на складе превысит допустимую норму, равную одной партии.

Какой стратегии должен придерживаться завод в сложившейся ситуации?

Формализация. У природы два состояния: поставщик надежный и поставщик ненадежный. У фирмы - четыре стратегии: 1) не осуществлять никаких дополнительных действий, 2) послать к поставщику свой транспорт, 3) послать к поставщику представителя и транспорт, 4) купить и привезти материал-заменитель от другого поставщика.

Составим таблицу расчетов:

 

 

Затраты и убытки фирмы-изготовителя

Ситуация

Стоимость материала

Недовыпуск продукции

Транспорт

Команди-ровочные расходы

Издержки хранения

Общая сумма

1 1

- 100

0

0

0

0

- 100

1 2

0

- 400

0

0

0

- 400

2 1

- 100

0

- 50

0

0

- 150

2 2

- 50

- 200

- 50

0

0

- 300

3 1

- 100

0

- 50

- 50

0

- 200

3 2

- 80

- 80

- 50

- 50

0

- 260

4 1

- 250

0

- 50

0

- 30

- 330

4 2

- 150

0

- 50

0

0

- 200


 

Решение. На основе полученных результатов вычислений можно составить платежную матрицу:

 

 

   

min

max

- 100

- 400

- 400

 

- 150

- 300

- 300

 

- 200

- 260

- 260

- 260

- 330

- 200

- 330

 

 

Ответ. Нужно придерживаться третьей стратегии и затраты не превысят 260 ед., если послать к поставщику представителя и транспорт.

1. Рассмотренный способ поиска оптимального решения называется критерием Вальда (Максиминный критерий принятия решения). Выбирается решение, гарантирующее получение выигрыша не меньше, чем maxmin:

vW = maxi minj aij = -260 ед.

Применяя этот критерий мы представляем на месте природы активного и злонамеренного противника. Это пессимистичный подход.

2. Максимаксный критерий. Самый благоприятный случай:

vM = maximaxj aij = -100 ед.

Если фирма ничего не предпримет, то потратит не больше 100 единиц. Это критерий абсолютного оптимизма.

 

Критерий пессимизма-оптимизма Гурвица.

Воспользуемся критерием пессимизма-оптимизма Гурвица.

ZHW = , 

 

Степень оптимизма

Решение

 

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

А1

1 стратегия

-370

-340

-310

-280

-250

-220

-190*

-160*

-130*

А2

2 стратегия

-285

-270

-255

-240

-225*

-210*

-195

-180

-165

А3

3 стратегия

-254*

-248*

-242*

-236*

-230

-224

-218

-212

-206

А4

4 стратегия

-317

-304

-281

-278

-265

-252

-239

-226

-213


 

Величина ZHW для каждого значения γ отмечена. При    γ £ 4/9 критерий Гурвица рекомендует решение А3, при 4/9£ γ £2/3 - решение А2. В остальных случаях А1. А4 не выгодно во всех случаях.

 

Критерий Сэвиджа (критерий минимакса риска).

Теперь воспользуемся критерием Сэвиджа.

ZS= .

 В рассматриваемой задаче минимакс риска достигается сразу при двух стратегиях А2 и А3:

 

   

max

min

0

200

200

 

50

100

100

100

100

60

100

100

230

0

130

 

 

Критерий Лапласа.

Решением игры по критерию Лапласа является вторая стратегия:

 

 

max

-250

 

-225

-225

-230

 

-265

 

Гипотеза о равновероятности состояний природы является довольно искусственной, поэтому принципом Лапласа можно пользоваться лишь в ограниченных случаях. В более общем случае следует считать, что состояния природы не равновероятны и использовать для решения критерий Байеса-Лапласа.

Критерий Байеса-Лапласа.

Этот критерий отступает от условий полной неопределенности - он предполагает, что возможным состояниям природы можно приписать определенную вероятность их наступления и, определив математическое ожидание выигрыша для каждого решения, выбрать то, которое обеспечивает наибольшее значение выигрыша:

ZBL= .

 

Возвращаясь к нашей игре предположим, что руководители фирмы-потребителя, прежде чем принять решение, проанализировали, насколько точно поставщик ранее выполнял сроки поставок, и выяснили, что в 25 случаях из 100 сырье поступало с опозданием.

Исходя из этого, можно приписать вероятность наступления первого состояния природы вероятность yj = 0,75 = (1-0,25), второго - yj = 0,25. Тогда согласно критерию Байеса-Лапласа оптимальным является решение А1.

 

Стратегии

å aij qj

А1

- 175*

А2

-187,5

А3

- 215

А4

- 297,5


Перечисленные критерии не исчерпывают всего многообразия критериев выбора решения в условиях неопределенности, в частности, критериев выбора наилучших смешанных стратегий, однако и этого достаточно, чтобы проблема выбора решения стала неоднозначной:

 

Решение

Критерии

Стратегии

Вальда

maxmax

Гурвица

Сэвиджа

Лапласа

Байеса-Л

А1

 

*

*

   

*

А2

   

*

*

*

 

А3

*

 

*

*

   

А4

           

 

Из таблицы видно, что от выбранного критерия (а в конечном счете - от допущений) зависит и выбор оптимального решения.

 

 

 

 

 

 

 

 

 

  1. Выводы.

Выбор критерия ( как и выбор принципа оптимальности) является наиболее трудной и ответственной задачей в теории принятия решений. Однако конкретная ситуация никогда не бывает настолько неопределенной,  чтобы нельзя было получить хотя бы частичной информации относительно вероятностного распределения состояний природы. В этом случае, оценив распределение вероятностей состояний природы применяют метод Байеса-Лапласа, либо проводят эксперимент, позволяющий уточнить поведение природы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Список литературы.

  1. Мак-Кинси Дж. Введение в теорию игр. М., Физматгиз,1966
  2. Оуэн Г. Теория игр. М., Мир 1971
  3. Дюбин Г.Н., Суздаль В.Г. Введение в прикладную теорию игр. М.: Наука, 1981

 

 

 

 

 


 



Информация о работе Игры с природой в условиях неопределенности