Автор работы: Пользователь скрыл имя, 17 Февраля 2013 в 17:11, реферат
При ядерном взрыве, авариях на АЭС и других ядерных превращениях появляются и действуют невидимые и не ощущаемые человеком излучения. По своей природе ядерное излучение может быть электромагнитным, как, например, гамма-излучение, или представлять поток быстро движущихся элементарных частиц – нейтронов, протонов, бета и альфа-частиц.
ВВЕДЕНИЕ 3
1.МЕТОДЫ ОБНАРУЖЕНИЯ И ИЗМЕРЕНИЯ 4
2.ЕДИНИЦЫ ИЗМЕРЕНИЯ 6
3.КЛАССИФИКАЦИЯ ПРИБОРОВ, СИСТЕМ И СРЕДСТВ РАДИАЦИОННОГО КОНТРОЛЯ 9
ЗАКЛЮЧЕНИЕ 18
Литература: 19
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
УО «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»
РЕФЕРАТ
На тему: Методы обнаружения и измерения радиоактивных излучений
Выполнила студентка 1 курса группы РФФ-1
МИНСК 2013
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 3
1.МЕТОДЫ ОБНАРУЖЕНИЯ И ИЗМЕРЕНИЯ 4
2.ЕДИНИЦЫ ИЗМЕРЕНИЯ 6
3.КЛАССИФИКАЦИЯ ПРИБОРОВ, СИСТЕМ И СРЕДСТВ РАДИАЦИОННОГО КОНТРОЛЯ 9
ЗАКЛЮЧЕНИЕ 18
Литература: 19
Ионизирующее излучение – это любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков.
При ядерном взрыве, авариях
на АЭС и других ядерных превращениях
появляются и действуют невидимые
и не ощущаемые человеком излучения.
По своей природе ядерное
Действие ионизирующих излучений на людей и животных заключается в разрушении живых клеток организма, которое может привести к различной степени заболеваниям, а в некоторых случаях и к смерти. Чтобы оценить влияние ионизирующих излучений на человека (животного), надо учитывать две основных характеристики: ионизирующую и проникающую способности.
Давайте рассмотрим эти две способности для альфа-, бета-, гамма- и нейтронного излучений.
Альфа-излучение представляет
собой поток ядер гелия с двумя
положительными зарядами. Ионизирующая
способность альфа-излучения в
воздухе характеризуется
Бета-излучение представляет собой поток электронов или позитронов со скоростью, близкой к скорости света. Ионизирующая способность невелика и составляет в воздухе 40 – 150 пар ионов на 1 см пробега. Проникающая способность намного выше, чем у альфа-излучения, и достигает в воздухе 20 м.
Гамма-излучение представляет собой электромагнитное излучение, которое распространяется со скоростью света. Ионизирующая способность в воздухе – всего несколько пар ионов на 1 см пути, А вот проникающая способность очень велика – в 50 – 100 раз больше, чем у бета-излучения и составляет в воздухе сотни метров.
Нейтронное излучение
– это поток нейтральных
Рассматривая ионизирующую
и проникающую способность, можно
сделать вывод. Альфа-излучение обладает
высокой ионизирующей и слабой проникающей
способностью. Обыкновенная одежда полностью
защищает человека. Самым опасным
является попадание альфа-частиц внутрь
организма с воздухом, водой и
пищей. Бета-излучение имеет меньшую
ионизирующую способность, чем альфа-излучение,
но большую проникающую
В результате взаимодействия радиоактивного излучения со внешней средой происходит ионизация и возбуждение ее нейтральных атомов и молекул. Эти процессы изменяют физико-химические свойства облучаемой среды. Взяв за основу эти явления, для регистрации и измерения ионизирующих излучений используют ионизационный, химический и сцинтилляционный методы.
Ионизационный метод. Сущность его заключается в том, что под воздействием ионизирующих излучений в среде (газовом объеме) происходит ионизация молекул, в результате чего электропроводность этой среды увеличивается. Если в нее поместить два электрода, к которым приложено постоянное напряжение, то между электродами возникает направленное движение ионов, т.е. проходит так называемый ионизационный ток, который легко может быть измерен. Такие устройства называются детекторами излучений. В качестве детекторов в дозиметрических приборах используются ионизационные камеры и газоразрядные счетчики различных типов.
Химический метод. Его сущность состоит в том, что молекулы некоторых веществ в результате воздействия ионизирующих излучений распадаются, образуя новые химические соединения. Количество вновь образованных химических веществ можно определить различными способами. Наиболее удобным для этого является способ, основанный на изменении плотности окраски реактива, с которым вновь образованное химическое соединение вступает в реакцию.
Сцинтилляционный метод. Этот метод основывается на том, что некоторые вещества (сернистый цинк, йодистый натрий, вольфрамат кальция и др.) светятся при воздействии на них ионизирующих излучений. Возникновение свечения является следствием возбуждения атомов под действием излучений; при возвращении в основное состояние атомы испускают фотоны видимого света различной яркости (сцинтилляции). Фотоны видимого света улавливаются специальным прибором – так называемым фотоэлектронным умножителем, способным регистрировать каждую вспышку.
По мере открытий учеными радиоактивности и ионизирующих излучений стали появляться и единицы их измерения. Например, рентген, кюри. Но они не были связаны какой-либо системой, а потому и называются внесистемными единицами. Во всем мире сейчас действует единая система измерений – СИ (система интернациональная). У нас она подлежит обязательному применению с 1 января 1982 г. К 1 января 1990 г. этот переход надо было завершить. Но в связи с экономическими и другими трудностями процесс затягивается. Однако вся новая аппаратура, в том числе и дозиметрическая, как правило, градуируются в новых единицах.
Единицы радиоактивности
В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин один распад в секунду (распр./с). В системе СИ эта единица получила название беккерель (Бк). В практике радиационного контроля, в том числе и в Чернобыле до последнего времени широко использовалась внесистемная единица активности – кюри (Ки). Один кюри – это 3,7х10~" ядерных превращений в секунду.
Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы: Ки/т, мКи/г, кБк/кг и т.п. (удельная активность). На единицу объема: Ки/м3, мКи/л, Бк/см3 и т.п. (объемная концентрация) или на единицу площади: Ки/км2, мКи/см2, ПБк/м2 и т.п.
Единицы ионизирующих излучений
Для измерения величин, характеризующих ионизирующее излучение, исторически первой появилась единица «рентген». Это мера экспозиционной дозы рентгеновского или гамма-излучений. Позже для измерения поглощенной дозы излучения добавили «рад».
Доза излучения (поглощенная доза) – энергия радиоактивного излучения, поглощенная в единице массы облучаемого вещества или человеком. С увеличением времени облучения доза всегда растет. При одинаковых условиях облучения она зависит от состава вещества. Поглощенная доза нарушает физиологические процессы в организме и приводит в ряде случаев к лучевой болезни различной степени тяжести. В качестве единицы поглощенной дозы излучения в системе СИ предусмотрена специальная единица – грей (Гр). 1 грей – это такая единица поглощенной дозы, при которой 1 кг облучаемого вещества поглощает энергию в 1 джоуль (Дж). Следовательно 1 Гр = 1 Дж/кг.
Поглощенная доза излучения является основной физической величиной, определяющей степень радиационного воздействия.
Мощность дозы (мощность поглощенной дозы) – приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе СИ – грей в секунду. Это такая мощность поглощенной дозы излучения, при которой за 1 с в веществе создается доза излучения в 1 Гр.
На практике для оценки поглощенной дозы излучения до сих пор широко используют внесистемную единицу мощности поглощенной дозы – рад в час (рад/ч) или рад в секунду (рад/с).
Эквивалентная доза. Это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов излучений. Определяется она по формуле Дэкв=QxД. Где Д – поглощенная доза данного вида излучения, Q – коэффициент качества излучения, который для различных видов ионизирующих излучений с неизвестным спектральным составом принят для рентгеновского и гамма-излучения-1, для бета- излучения-1, для нейтронов с энергией от 0,1 до 10 МэВ-10, для альфа- излучения с энергией менее 10 МэВ-20. Из приведенных цифр видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают, соответственно, в 10 и 20 раз больший поражающий эффект.
В системе СИ эквивалентная доза измеряется в зивертах (Зв).
Зиверт равен одному грею, деленному на коэффициент качества. При Q=1 получаем
Бэр (биологический эквивалент рентгена) – это внесистемная единица эквивалентной дозы, такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения. Поскольку коэффициент качества бета и гамма-излучений равен 1, то на местности, загрязненной радиоактивными веществами при внешнем облучении,
1 Зв = 1 Гр; 1 бэр = 1 рад; 1 рад » 1 Р.
Из этого можно сделать вывод, что эквивалентная, поглощенная и экспозиционная дозы для людей, находящихся в средствах защиты на зараженной местности, практически равны.
Мощность эквивалентной дозы – отношение приращения эквивалентной дозы за какой-то интервал времени. Выражается в зивертах в секунду. Поскольку время пребывания человека в поле излучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквивалентной дозы в микрозивертах в час.
Согласно заключению Международной комиссии по радиационной защите вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а случаях кратковременного облучения – при дозах выше 0,5 Зв (50 бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь.
Мощность эквивалентной дозы, создаваемая естественным излучением (земного и космического происхождения), колеблется в пределах 1,5 – 2 мЗв/год, плюс искусственные источники (медицина, радиоактивные осадки) от 0,3 до 0,5 мЗв/год. Вот и выходит, что человек в год получает от 2 до 3 мЗв. Эти цифры примерные и зависят от конкретных условий. По другим источникам они выше и доходят до 5 мЗв/год.
Экспозиционная доза – мера ионизационного действия фотонного излучения, определяемая по ионизации воздуха в условиях электронного равновесия.
В СИ единицей экспозиционной дозы является один кулон на килограмм (Кл/кг). Внесистемной единицей является рентген (Р), 1Р=2,58х10-4Кл/кг. В свою очередь 1Кл/кг 3,876х103Р. Для удобства в работе при пересчете числовых значений экспозиционной дозы из одной системы единиц в другую обычно пользуются таблицами, имеющимися в справочной литературе.
Мощность экспозиционной дозы – приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ – ампер на килограмм (А/кг). Однако в переходный период можно пользоваться внесистемной единицей – рентген в секунду (Р/с).
1Р/с = 2,58х10-4 А/кг.
Надо помнить, что после
1 января 1990 г. не рекомендуется вообще
пользоваться понятием экспозиционной
дозы и ее мощности, Поэтому во время
переходного периода эти
В настоящее время для
Приборы, системы и средства контроля радиационной обстановки подразделяются на
-радиометрические,
Информация о работе Методы обнаружения и измерения радиоактивных излучений