Автор работы: Пользователь скрыл имя, 11 Октября 2013 в 07:35, реферат
В настоящее время современные хакеры используют обширный инструментарий. Его можно подразделить на следующие группы:
отладчики реального режима
отладчики V86
эмуляторы
автоматические распаковщики
дизассемблеры
прочие программы
Некоторые данные требуют анализа на целевой стороне. Например, контроль работы задач с динамически выделенной памятью. В этом случае при обращению к адресу в памяти происходит проверка на принадлежность его к какому-либо блоку и возможность доступа. Чтобы избежать проблем с динамическим выделением памяти и ускорить доступ к ней, StethoScope предоставляет возможность создания пула из некоторого числа буферов одинакового размера. Тогда, используя соответствующие функции доступа к этому пулу, можно осуществлять быстрый захват и освобождение его буферов.
При передаче данных на инструментальную сторону отладчик может производить их предварительный анализ - фильтрацию. Фильтрация представляет собой отбор данных в соответствии с некоторым заданным шаблоном (фильтром). Например, можно рассматривать события только некоторых определенных типов (переключение контекста, запуск задачи, и.т.д) или сравнивать полученные данные с некоторой маской значений. Фильтрация данных нужна, чтобы уменьшить вмешательство в работу целевой системы, то есть можно разбить отладку на несколько уровней: от минимального (исследование событий одного вида, например, переключение контекстов) до максимального (получение подробной информации о каждом событии в системе и данных о выполняемых задачах). В WindView представлены 3 уровня отладки:
3) Профилирование системы
Под профилированием понимается один из способов мониторинга, позволяющий следить за выполнением некоторого множества задач (или всей системы) и предоставляющий пользователю информацию о том, как конкретная задача использует процессор (включая распределение времени в задаче).
Профилирование заключается в том, что с некоторой частотой производятся выборки данных об активных в этот промежуток времени задачах. При детальном профилировании собираются данные о каждой функции (количество ее вызовов, время выполнения). Приведем описание модуля ScopeProfile, входящего в StethoScope и представляющего собой типичный образец агента профилирования.
Сбор данных запускается либо специальной высокоприоритетной задачей, либо посредством ISR (Interrupt Service Routine). Существует два уровня профилирования: профилирование задачи способом "процедура за процедурой" (procedure-by-procedure) и профилирование системы способом "задача за задачей" (task-by-task). Основные параметры профилирования: частота выборки (sample rate) - частота, с которой производится сбор данных; частота анализа (analysis rate) - частота, с которой производится анализ имеющихся в буфере выборок. Анализирующая процедура представляет собой низкоприоритетную задачу, которая подсчитывает среднее из значений для задач и функций из всех выборок буфера и значений, полученных в ходе предыдущего анализа.
Цель профилирования задачи - выявить наиболее часто исполняемые блоки для последующей их оптимизации. Для этого служит способ "процедура за процедурой", позволяющий получать информацию о каждой вызываемой в процессе профилирования функции. Эта информация состоит из среднего времени, которое функция выполнялась, с учетом и без учета времени вызова из нее других функций. Также подсчитывается число ее вызовов. В результате анализа стека строится так называемое дерево выполнения (execution tree), показывающее маршрут вызова каждой функции.
Способ "задача за задачей" служит для сбора информации об активности системы в целом, а именно, какое процессорное время использует каждая задача.
4) "Посмертный" (post-mortem) анализ
Подобный анализ производится в том случае, если в работе системы произошел сбой. Тогда пользователя интересуют не все события, а только те, которые произошли за некоторое время до "обвала" системы. В этом случае, чтобы влияние отладчика на систему было сведено к минимуму, все данные сохраняются в некотором буфере и обновляются по мере его заполнения, но не пересылаются на инструментальную сторону. Адрес для буфера надо выбирать так, чтобы при перезагрузке системы его содержимое не уничтожалось. В VxWorks это можно реализовать следующим образом: надо изменить функцию sysMemTop(), определяющую верхний адрес локальной памяти, так, чтобы она возвращала значение, меньшее действительного адреса. Тогда в образовавшемся адресном пространстве, недоступном системе, можно расположить буфер данных. В результате после перезагрузки в распоряжение отладчика поступают данные о последних событиях, произошедших в системе и, возможно, повлекших ее сбой.
При анализе данных или профилировании важную роль играет представление полученной информации. Как и в случае активной отладки пользовательский интерфейс делится на три составляющих: графический интерфейс, режим командной строки и команды представления данных.
Графическое представление данных - наиболее важная часть пользовательского интерфейса при мониторинге. Поскольку, как правило, анализируется взаимодействие задач в системе, то нужна визуализация всех событий и задач системы. В WindView для этого служит специальное окно View Graph. По горизонтали откладывается время (единичный интервал времени может меняться), по вертикали приведен список всех задач в системе и уровни прерываний. В такой системе координат легко увидеть, какая задача в какой момент времени в каком состоянии находилась. Особыми значками отмечаются происходящие события, подробности о которых (также как и о задачах) можно увидеть в другом окне.
При мониторинге текущего состояния системы удобно пользоваться графическим интерфейсом, но при анализе сохраненных ранее данных, а также при "посмертной" отладке, можно использовать режим командной строки. Требования к нему предъявляются аналогичные тем, что были у средств активной отладки.
Помимо описанных в предыдущей главе команд представления данных у активных отладчиков средства мониторинга могут располагать также такими командами:
При мониторинге особое внимание уделяется работе псевдоагентов, которые закладываются в код программы на этапе компиляции. Для их успешной работы по сбору необходимой информации требуется наличие на целевой машине ряда функций, вызываемых псевдо-агентами. Эти функции могут быть собраны в одну библиотеку, так называемую библиотеку доступа (access library).
В [20] описывается средство работы с псевдо-агентами - "Alamo monitor". На Рис.5 приведена его архитектура.
Координатор мониторинга посылает запросы псевдо-агенту и производит фильтрацию полученной информации.
В зависимости от возможностей, предоставляемых библиотекой доступа, изменяется и роль псевдо-агентов. Возможна ситуация, когда на целевой стороне присутствует только агент доставки данных из буфера, а все данные поставляются псевдо-агентами. Такой подход уменьшает воздействие отладчика на систему, так как все отладочные действия заложены при компиляции, и агент отладки только передает данные менеджеру по мере заполнения буфера, то есть не влияет на ход выполнения отлаживаемых задач.
Имеется и другое применение псевдо-агентов. При помощи встраивания в код программы некоторого некорректно работающего блока, можно моделировать критические ситуации и анализировать поведение задачи или всей системы в таких ситуациях.
Если раньше система реального времени рассматривалась нами как один процесс (с точки зрения ресурсов), то распределенные СРВ представляют уже набор взаимодействующих процессов.
Специфика заключается в том, что отлаживаемое приложение может быть распределено на нескольких платформах с разными процессорами, поэтому эффективность отладчика зависит от:
Кроме того, если система состоит из большого числа компонент, использование двухуровневой архитектуры "менеджер-агент" становится неэффективным, поскольку менеджер не сможет обработать в надлежащее время информацию от агентов. В этом случае целесообразно использовать многоуровневую структуру, в которой компоненты, объединенные по своим функциональным возможностям, представляют некоторые подсистемы, которыми управляют соответствующие менеджеры, являющиеся агентами на следующем уровне предложенной иерархии.
При включении в систему новой платформы необходимо, чтобы менеджер имел возможность осуществлять связь с агентом. Для этого к набору исходных текстов менеджера добавляется файл, содержащий функции взаимодействия с агентом. Здесь возможны следующие варианты:
Существенный недостаток такого подхода в том, что менеджер или какую-либо его часть придется пересобирать.
В [17] описан отладчик Panorama, платформо-зависимые черты, которого вынесены в отдельные файлы: файл описания платформы (агента) и tcl-скрипт, в котором описаны необходимые функции. Таким образом, имея встроенный tcl-интерпретатор, Panorama способен работать с новой платформой без пересборки менеджера. Архитектура этого отладчика приведена на рис.7.
В случае, если один агент обслуживает несколько менеджеров, целесообразно организовать промежуточное звено, в которое вынести все платформо-зависимые черты менеджеров. Такой подход реализован в среде разработки ПО реального времени TORNADO (система VxWorks). Он заключается в том, что на целевой стороне имеется универсальный агент (target agent), осуществляющий связь со средствами разработки ПО посредством целевого сервера (target server). В этом случае, во-первых, все клиенты работают с одним сервером (и, соответственно, с одним агентом) и, во-вторых, они имеют возможность обмениваться данными между собой, используя целевой сервер.
При отладке распределенного