Современная криптография. Электронная подпись

Автор работы: Пользователь скрыл имя, 22 Декабря 2010 в 16:26, реферат

Краткое описание

В первой главе данной работы можно познакомиться с основными понятиями современной криптографии, требованиям к ним, возможностями ее практического применения.
Во второй главе работы с протоколами распределения криптографических ключей, понятием электронной подписи и протоколами электронной подписи..
Третья глава данной работы рассказывает о хэш-функциях и (методах) алгоритмах их построения.
В четвертой главе будет рассказано о модернизации электронной подписи Эль Гамаля и задаче дискретного логарифмирования.

Прикрепленные файлы: 1 файл

Схема Эль гамаля.курсач.docx

— 91.19 Кб (Скачать документ)

 Нас эти семейства интересуют в основном как инструмент для определения  и построения семейств односторонних  хэш-функций.

 С прикладной точки зрения универсальные семейства  хэш-функций должны удовлетворять некоторым дополнительным требованиям.

 Во-первых, хэш-функции должны быть эффективно вычислимыми. Часто это требование включают в определение универсального семейства и формализуют следующим образом. 

У каждой хэш-функции h Î H имеется достаточно короткое описание h и существуют два эффективных алгоритма, первый из которых по запросу и выдает случайное h Î H, а второй по h аргументу x вычисляет h{x).

    Во-вторых, во многих случаях требуются семейства хэш-функций, которые определяются не на строках только данной фиксированной длины, а на строках всех длин (или бесконечной последовательности длин). В этом случае множество Нп, которое действует согласно определению 1 на строках длины п, называют коллекцией хэш-функций, а универсальным семейством называют п}.

В-третьих, для криптографических приложений иногда требуется так называемое свойство доступности коллизий (collision accessibility). Оно требует существования эффективного алгоритма, который по данным х1 и х2 выбирает h Î H такую, что

h(х1) = h(х2), равновероятным образом среди всех функций из Н, удовлетворяющих этому свойству. 

  1. Пусть F = GF(2k) и chop: {0,1}k ® {0,1}k-1 - функция, которая просто отбрасывает последний бит. Тогда семейство хэш-функций {chop(ax+b)} является 2-универсальным и удовлетворяет свойству доступности коллизий.   
  2. Пусть А = {0,1}n и В {0,1}m. Для х Î {0,1}n и у Î {0,1}n+m-1 определим конволюцию у о х элементов у и х как вектор длины m, i-я координата которого

    определяется по формуле  

Тогда семейство H = { (a о х) Å b | a Î {0,1}n+m-1 , b Î {0,1}m} представляет собой универсальное семейство хэш-функций.

Семейства односторонних хэш-функций. 

 Пусть {n1i} и { n0i} - две возрастающие последовательности натуральных чисел такие) что для всех i n1i ³ n0i и существует такой полином q, что q(n0i,) ³ n1.

(такие  последовательности полиномиально связаны).

  Пусть Нk - коллекция функций такая, что для всех h Î Hk  

и пусть . 

Предположим, что А  - вероятностный алгоритм, работающий за поли-номиальное время, который на входе k выдает строку x Î {0,1}n1k, называемую исходным значением, и затем для данной случайной h Î Hk пытается найти у Î {0,1}n1k такое, что h{x) = h{y), но х ¹  у. 

 Определение 2. Семейство U называется универсальным семейством односторонних хэш-функций, если для всех полиномов р, для всех полиномиальных вероятностных алгоритмов А и всех достаточно больших k выполняются следующие условия: 

  1. x Î {0,1}n1k - исходное значение для А, то

   Рг[А(h,x) = у, h{x) - h(y), у ¹ х] < 1/p(n1k),

где вероятность берется по всем h из Hk и по всем случайным выборам алгоритма А.

    2. Для любой h Î Hk существует описание h. полиномиальной (от n1k) длины такое, что по этому описанию и по х значение h(x) вычислимо за полиномиальное время. 

    3. Коллекция Hk доступна, т. е. существует алгоритм G, который на входе k равномерно по вероятности генерирует описание функции h Î Hk .

 Заметим, что Hk рассматривается как набор описаний функций: два разных описания могут соответствовать одной и той же функции.

В данном определении А - это машина Тьюринга (однородная модель). Определение универсального семейства односторонних хэш-функций, а котором А - полиномиальная схема (неоднородная модель) формулируется аналогично, но в п. 1 вероятность берется только по выбору h из Hk.

      Также заметим, что это семейство называется семейством хэш-функций с трудно обнаружимыми коллизиями.

      Глава 4. Модернизация электронной  подписи Эль Гамаля. Задача дискретного логарифмирования.

 

    Модернизация  электронной подписи  Эль Гамаля. 

    Также, как и в обычной схеме, секретный ключ x ÎR Z*p-1 и открытый ключ   y = g-x mod p. Пространством сообщений в данной схеме является Zp-1 .

    Подписывающие выбирают случайные u1,…un , так, чтобы они были взаимно простые (т.е gcd (un,p-1) = 1).

Тогда  

  Подписью в этом случае является набор (r1,…,rn,s) .

Для проверки подписи (r1,…,rn,s) для сообщения m необходимо сначала проверить условия r1,…,rn Î Z*p и s Î Zp-1 . Если хотя бы одно из них ложно, то подпись отвергается. В противном случае подпись принимается и только тогда, когда                                     .   

      Идея метода состоит в том, что можно подписывать коллективом из n человек, что значительно усложнит задачу раскрытия этой подписи т.к. нам неизвестны все u1,…un . 

Задача  дискретного логарифмирования. 

      Задача  дискретного логарифмирования – одно из наиболее популярных задач, используемых в целях криптографии. Это объясняется высокой сложностью ее решения в некоторых группах.

Постановка  задачи.

Пусть G – некоторая мультипликативно записываемая группа, а a и b – некоторые элементы этой группы, связанные равенством b = an при некотором целом n. Любое целое x, удовлетворяющее уравнению b = ax, называется дискретным логарифмом элемента b по основанию a. Задача дискретного логарифмирования в группе G состоит в отыскании по данным a и b вышеуказанного вида некоторого дискретного логарифма b по основанию a. Если a имеет бесконечный порядок, то дискретный логарифм любого элемента по основанию a определен однозначно. В противном случае все дискретные логарифмы b по основаниям a можно получить из некоторого такого дискретного логарифма x0 по формуле x = x0 + km, где km – порядок элемента a, а параметр k пробегает Z.

      Для криптографических приложений наиболее важна задача дискретного логарифмирования в мультипликативных группах  конечных полей GF(q) и колец Zn Как известно, группа GF(q)* циклическая и имеет порядок q –1, поэтому если в качестве a берется некоторый порождающий этой группы, то дискретный логарифм любого элемента GF(q)* по основанию a существует и определен однозначно. Если логарифмировать по фиксированному основанию, которое является порождающим g группы GF(q)*, то можно находить дискретные логарифмы по произвольному основанию. Действительно, чтобы найти дискретный логарифм  x элемента b по основанию a, достаточно вычислить дискретные логарифмы y и z  элементов a и b по основанию a и решить уравнение xy = z(mod q – 1) относительно z. Для краткости обозначим дискретный логарифм y произвольного элемента gÎGF(q)* по основанию a, удовлетворяющий неравенству 0 < y < q – 2, через log. Очевидно, что log – взаимно однозначное отображение GF(q)* на Zq-1, удовлетворяющее обычному свойству логарифма: log gh = (log  g + log  h) mod (q-1) для произвольных g,h ÎGF(q)*. 
 
 
 
 
 
 

Информация о работе Современная криптография. Электронная подпись