Классификация атак на симметрические криптоалгоритмы

Автор работы: Пользователь скрыл имя, 06 Февраля 2015 в 14:54, контрольная работа

Краткое описание

В последнее время сфера применения скремблирующих алгоритмов значительно сократилась. Это объясняется в первую очередь снижением объемов побитной последовательной передачи информации, для защиты которой были разработаны данные алгоритмы. Практически повсеместно в современных системах применяются сети с коммутацией пакетов, для поддержания конфиденциальности которой используются блочные шифры. А их криптостойкость превосходит, и порой довольно значительно, криптостойкость скремблеров.

Содержание

1. Симметричные криптоалгоритмы
1.1 Скремблеры 3
1.2 Общие сведения о блочных шифрах 6
2. Классификация криптоатак
2.1 Атака с известным шифртекстом (ciphertext only attack). 11
2.2 Атака с известным открытым текстом

(known plaintext attack) 13
2.3 Атака с выбранным открытым текстом
(chosen plaintext attack). 14
Адаптивная атака с выбором открытого текста
(adaptive chosen plaintext attack) 15


2.5 Атака с выбором шифртекста (chosen ciphertext attack)

Адаптивная атака с выбором шифртекста
(adaptive chosen ciphertext attack) 16

2.7 Атака на основе связанных ключей (related key attack) 16

2.8 Атака с выбором ключа (chosen key attack)

Прикрепленные файлы: 1 файл

Министерство образования и науки Украины.doc

— 198.50 Кб (Скачать документ)

 

 

Министерство  образования  и  науки  Украины

 

 НАЦИОНАЛЬНЫЙ  ТЕХНИЧЕСКИЙ  УНИВЕРСИТЕТ  УКРАИНЫ

 

 “КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ  ИНСТИТУТ”

 

  

Учебно-научный комплекс "Институт прикладного системного анализа"

 

 

Контрольная работа

 

 Дисциплина         Технологии  защиты информации

Тема               Классификация  атак  на симметрические криптоалгоритмы

              

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Содержание

 

   1. Симметричные криптоалгоритмы

            1.1   Скремблеры 3

            1.2  Общие сведения  о блочных шифрах                              6

   2.   Классификация криптоатак

           2.1 Атака с известным шифртекстом (ciphertext only attack).    11

             2.2  Атака с известным открытым текстом

 

 (known plaintext attack)    13

      2.3 Атака с выбранным открытым  текстом

                                                                     (chosen plaintext attack). 14

    1. Адаптивная атака с выбором открытого текста

                                             (adaptive chosen plaintext    attack) 15

 

 

           2.5 Атака с выбором шифртекста (chosen ciphertext attack)      

             

    1. Адаптивная атака с выбором шифртекста

                                     (adaptive chosen ciphertext          attack)  16

 

2.7 Атака на основе связанных ключей (related key attack)       16

 

2.8   Атака с выбором ключа (chosen key attack)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            1. Симметричные криптоалгоритмы

 

Криптографический алгоритм является симметричным, если для шифрования  и дешифрования  используется один и тот же ключ, который  является  закрытым.

 

1.1 Скремблеры

В последнее время сфера применения скремблирующих алгоритмов значительно сократилась. Это объясняется в первую очередь снижением объемов побитной последовательной передачи информации, для защиты которой были разработаны данные алгоритмы. Практически повсеместно в современных системах применяются сети с коммутацией пакетов, для поддержания конфиденциальности которой используются блочные шифры. А их криптостойкость превосходит, и порой довольно значительно, криптостойкость скремблеров.

Суть скремблирования заключается в побитном изменении проходящего через систему потока данных. Практически единственной операцией, используемой в скремблерах является XOR – "побитное исключающее ИЛИ". Параллельно прохождению информационного потока в скремблере по определенному правилу генерируется поток бит – кодирующий поток. Как прямое, так и обратное шифрование осуществляется наложением по XOR кодирующей последовательности на исходную.

Генерация кодирующей последовательности бит производится циклически из небольшого начального объема информации – ключа по следующему алгоритму. Из текущего набора бит выбираются значения определенных разрядов и складываются по XOR между собой. Все разряды сдвигаются на 1 бит, а только что полученное значение ("0" или "1") помещается в освободившийся самый младший разряд. Значение, находившееся в самом старшем разряде до сдвига, добавляется в кодирующую последовательность, становясь очередным ее битом (см. рис.1).

 
Рис.1.

Из теории передачи данных криптография заимствовала для записи подобных схем двоичную систему записи. По ней изображенный на рисунке скремблер записывается комбинацией "100112" – единицы соответствуют разрядам, с которых снимаются биты для формирования обратной связи.

Рассмотрим пример кодирования информационной последовательности 0101112 скремблером 1012 с начальным ключом 1102.

скремблер  код.бит   инф.бит   рез-т

 1 1 0  _

  \ \    \_

1 1 1  _  \_

  \ \    \_   0   XOR   0    =   0

0 1 1  _  \_

  \ \    \_   1   XOR   1    =   0

1 0 1     \_

  \ \         1   XOR   0    =   1

и т.д.

 

Как видим, устройство скремблера предельно просто. Его реализация возможна как на электронной, так и на электрической базе, что и обеспечило его широкое применение в полевых условиях. Более того, тот факт, что каждый бит выходной последовательности зависит только от одного входного бита, еще более упрочило положение скремблеров в защите потоковой передачи данных. Это связано с неизбежно возникающими в канале передаче помехами, которые могут исказить в этом случае только те биты, на которые они приходятся, а не связанную с ними группу байт, как это имеет место в блочных шифрах.

Декодирование заскремблированных последовательностей происходит по той же самой схеме, что и кодирование. Именно для этого в алгоритмах применяется результирующее кодирование по "исключающему ИЛИ" – схема, однозначно восстановимая при раскодировании без каких-либо дополнительных вычислительных затрат. Произведем декодирование полученного фрагмента.

Как Вы можете догадаться, главная проблема шифров на основе скремблеров - синхронизация передающего (кодирующего) и принимающего (декодирующего) устройств. При пропуске или ошибочном вставлении хотя бы одного бита вся передаваемая информация необратимо теряется. Поэтому, в системах шифрования на основе скремблеров очень большое внимание уделяется методам синхронизации. На практике для этих целей обычно применяется комбинация двух методов: а) добавление в поток информации синхронизирующих битов, заранее известных приемной стороне, что позволяет ей при ненахождении такого бита активно начать поиск синхронизации с отправителем, и б) использование высокоточных генераторов временных импульсов, что позволяет в моменты потери синхронизации производить декодирование принимаемых битов информации "по памяти" без синхронизации.

Число бит, охваченных обратной связью, то есть разрядность устройства памяти для порождающих кодирующую последовательность бит называется разрядностью скремблера. Изображенный выше скремблер имеет разрядность 5. В отношении параметров криптостойкости данная величина полностью идентична длине ключа блочных шифров, который будет проанализирован далее. На данном же этапе важно отметить, что чем больше разрядность скремблера, тем выше криптостойкость системы, основанной на его использовании.

При достаточно долгой работе скремблера неизбежно возникает его зацикливание. По выполнении определенного числа тактов в ячейках скремблера создастся комбинация бит, которая в нем уже однажды оказывалась, и с этого момента кодирующая последовательность начнет циклически повторяться с фиксированным периодом. Данная проблема неустранима по своей природе, так как в N разрядах скремблера не может пребывать более 2N комбинаций бит, и, следовательно, максимум, через, 2N-1 циклов повтор комбинации обязательно произойдет. Комбинация "все нули" сразу же исключается из цепочки графа состояний скремблера – она приводит скремблер к такому же положению "все нули". Это указывает еще и на то, что ключ "все нули" неприменим для скремблера. Каждый генерируемый при сдвиге бит зависит только от нескольких бит хранимой в данный момент скремблером комбинации. Поэтому после повторения некоторой ситуации, однажды уже встречавшейся в скремблере, все следующие за ней будут в точности повторять цепочку, уже прошедшую ранее в скремблере.

Возможны различные типы графов состояния скремблера. На рисунке 2 приведены примерные варианты для 3-разрядного скремблера. В случае "А" кроме всегда присутствующего цикла "000">>"000" мы видим еще два цикла – с 3-мя состояниями и 4-мя. В случае "Б" мы видим цепочку, которая сходится к циклу из 3-х состояний и уже никогда оттуда не выходит. И наконец, в случае "В" все возможные состояния кроме нулевого, объединены в один замкнутый цикл. Очевидно, что именно в этом случае, когда все 2N-1 состояний системы образуют цикл, период повторения выходных комбинаций максимален, а корреляция между длиной цикла и начальным состоянием скремблера (ключом), которая привела бы к появлению более слабых ключей, отсутствует.

 
Рис.2.

И вот здесь математика преподнесла прикладной науке, каковой является криптография, очередной подарок. Следствием одной из теорем доказывается (в терминах применительно к скремблированию), что для скремблера любой разрядности N всегда существует такой выбор охватываемых обратной связью разрядов, что генерируемая ими последовательность бит будет иметь период, равный 2N-1 битам. Так, например, в 8-битном скремблере, при охвате 0-го, 1-го, 6-го и 7-го разрядов действительно за время генерации 255 бит последовательно проходят все числа от 1 до 255, не повторяясь ни разу.

Схемы с выбранными по данному закону обратными связями называются генераторами последовательностей наибольшей длины (ПНД), и именно они используются в скремблирующей аппаратуре. Из множества генераторов ПНД заданной разрядности во времена, когда они реализовывались на электрической или минимальной электронной базе выбирались те, у которых число разрядов, участвующих в создании очередного бита, было минимальным. Обычно генератора ПНД удавалось достичь за 3 или 4 связи. Сама же разрядность скремблеров превышала 30 бит, что давало возможность передавать до 240 бит = 100 Мбайт информации без опасения начала повторения кодирующей последовательности.

ПНД неразрывно связаны с математической теорией неприводимых полиномов. Оказывается, достаточно чтобы полином степени N не был представим по модулю 2 в виде произведения никаких других полиномов, для того, чтобы скремблер, построенный на его основе, создавал ПНД. Например, единственным неприводимым полиномом степени 3 является x3+x+1, в двоичном виде он записывается как 10112(единицы соответствуют присутствующим разрядам). Скремблеры на основе неприводимых полиномов образуются отбрасыванием самого старшего разряда (он всегда присутствует, а следовательно, несет информацию только о степени полинома), так на основе указанного полинома, мы можем создать скремблер 0112 с периодом зацикливания 7(=23-1). Естественно, что на практике применяются полиномы значительно более высоких порядков. А таблицы неприводимых полиномов любых порядков можно всегда найти в специализированных математических справочниках.

Существенным недостатком скремблирующих алгоритмов является их нестойкость к фальсификации. Подробнее данная проблема рассмотрена на следующей лекции, применительно к созданию целых криптосистем.

 

 

 

 

 

 

1.2 Общие сведения о блочных шифрах

 

Характерной особенностью блочных криптоалгоритмов является тот факт, что в ходе своей работы они производят преобразование блока входной информации фиксированной длины и получают результирующий блок того же объема, но недоступный для прочтения сторонним лицам, не владеющим ключом. Таким образом, схему работы блочного шифра можно описать функциями Z=EnCrypt(X,Key) и X=DeCrypt(Z,Key)

Ключ Key является параметром блочного криптоалгоритма и представляет собой некоторый блок двоичной информации фиксированного размера. Исходный (X) и зашифрованный (Z) блоки данных также имеют фиксированную разрядность, равную между собой, но необязательно равную длине ключа.

Блочные шифры являются основой, на которой реализованы практически все криптосистемы. Методика создания цепочек из зашифрованных блочными алгоритмами байт позволяет шифровать ими пакеты информации неограниченной длины. Такое свойство блочных шифров, как быстрота работы, используется асимметричными криптоалгоритмами, медлительными по своей природе. Отсутствие статистической корреляции между битами выходного потока блочного шифра используется для вычисления контрольных сумм пакетов данных и в хешировании паролей.

Следующие разработки всемирно признаны стойкими алгоритмами и публикаций о универсальных методах их взлома в средствах массовой информации на момент создания материала не встречалось.

 

 

 

Автор

Размер блока

Длина ключа

IDEA

Xuejia Lia and James Massey

64 бита

128 бит

CAST128

 

64 бита

128 бит

BlowFish

Bruce Schneier

64 бита

128 – 448 бит

ГОСТ

НИИ ***

64 бита

256 бит

TwoFish

Bruce Schneier

128 бит

128 – 256 бит

MARS

Корпорация IBM

128 бит

128 – 1048 бит


 

 

Криптоалгоритм именуется идеально стойким, если прочесть зашифрованный блок данных можно только перебрав все возможные ключи, до тех пор, пока сообщение не окажется осмысленным. Так как по теории вероятности искомый ключ будет найден с вероятностью 1/2 после перебора половины всех ключей, то на взлом идеально стойкого криптоалгоритма с ключом длины N потребуется в среднем 2N-1проверок. Таким образом, в общем случае стойкость блочного шифра зависит только от длины ключа и возрастает экспоненциально с ее ростом. Даже предположив, что перебор ключей производится на специально созданной многопроцессорной системе, в которой благодаря диагональному параллелизму на проверку 1 ключа уходит только 1 такт, то на взлом 128 битного ключа современной технике потребуется не менее 1021 лет. Естественно, все сказанное относится только к идеально стойким шифрам, которыми, например, с большой долей уверенности являются приведенные в таблице выше алгоритмы.

Кроме этого условия к идеально стойким криптоалгоритмам применяется еще одно очень важное требование, которому они должны обязательно соответствовать. При известных исходном и зашифрованном значениях блока ключ, которым произведено это преобразование, можно узнать также только полным перебором. Ситуации, в которых постороннему наблюдателю известна часть исходного текста встречаются повсеместно. Это могут быть стандартные надписи в электронных бланках, фиксированные заголовки форматов файлов, довольно часто встречающиеся в тексте длинные слова или последовательности байт. В свете этой проблемы описанное выше требование не является ничем чрезмерным и также строго выполняется стойкими криптоалгоритмами, как и первое.

Информация о работе Классификация атак на симметрические криптоалгоритмы