Автор работы: Пользователь скрыл имя, 23 Сентября 2014 в 19:16, контрольная работа
На протяжении веков человек стремился разгадать тайну великого мирового «порядка» Вселенной, которую древнегреческие философы и назвали Космосом (в переводе с греческого - «порядок», «красота»), в отличие от Хаоса, предшествовавшего, как они считали, появлению Космоса.
Первые, дошедшие до нас естественнонаучные представления об окружающей нас Вселенной сформулировали древнегреческие философы в 7-5 вв. до н. э. Их натурфилософские учения, опирались на накопленные ранее астрономические знания египтян, шумеров, вавилонян, арийцев, но отличались существенной ролью объясняющих гипотез, стремлением проникнуть в скрытый механизм явлений.
Введение 3
Новая астрономическая революция. 4
Методологические установки «неклассической» астрономии XX в. 6
Заключение 10
Список литературы 11
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ
ФЕДЕРАЦИИ
ФГБОУ ВПО «ГАУ Северного Зауралья»
Контрольная работа
Тема: Современная астрономическая картина мира.
По дисциплине: КСЕ
Тюмень, 2013 г
Содержание
Введение
Новая астрономическая революция.
Методологические установки «неклассической» астрономии XX в. 6
Заключение
Список литературы
Введение
На протяжении веков человек стремился разгадать тайну великого мирового «порядка» Вселенной, которую древнегреческие философы и назвали Космосом (в переводе с греческого - «порядок», «красота»), в отличие от Хаоса, предшествовавшего, как они считали, появлению Космоса.
Первые, дошедшие до нас естественнонаучные представления об окружающей нас Вселенной сформулировали древнегреческие философы в 7-5 вв. до н. э. Их натурфилософские учения, опирались на накопленные ранее астрономические знания египтян, шумеров, вавилонян, арийцев, но отличались существенной ролью объясняющих гипотез, стремлением проникнуть в скрытый механизм явлений.
Наблюдение круглых дисков Солнца, Луны, закругленной линии горизонта, а так же границы тени Земли, наползающей на луну при ее затмениях, правильная повторяемость дня и ночи, времен года, восходов и заходов светил - все это наводило на мысль, что в основе строения вселенной лежит принцип круговых форм и движений, «цикличности» и равномерности изменений. Но вплоть до 2 в. до н. э. не существовало отдельного учения о небе, которое объединило бы все знания в этой области в единую систему. Представления о небесных явлениях, как и явлениях «в верхнем воздухе» - буквально о «метеорных явлениях», долгое время входили в общие умозрительные учения о природе в целом. Эти учения несколько позднее стали называть физикой (от греческого слова «фюзис» - природа - в смысле периоды, существа вещей и явлений). Главным содержанием этой древней полу философской «физики», или в нашем понимании - скорее натурфилософии, включавшей в качестве едва ли не главных элементов космологию и космогонию, были поиски того неизменного начала, которое, как думали, лежит в основе мира изменчивых явлений.
В ХХ в. в астрономии произошли поистине радикальные изменения. Прежде всего, значительно расширился и обогатился теоретический фундамент астрономических наук. Начиная с 20-30-х годов, в качестве теоретической основы астрономического познания стали выступать (наряду с классической механикой) релятивистская и квантовая механика, что существенно раздвинуло "теоретический горизонт" астрономических исследований. Общая теория относительности создала возможность модельного теоретического описания явлений космологического масштаба и по сути впервые поставила космологию – эту чрезвычайно важную отрасль астрономии – на твердую теоретическую почву.
А создание квантовой механики послужило чрезвычайно мощным импульсом развития, как астрофизики, так и космогонического аспекта астрономии (в частности, выяснения источников энергии и механизмов эволюции звезд, звездных систем и др.); обеспечило переориентацию задач астрономии с изучения в основном механических движений космических тел (под влиянием гравитационного поля) на изучение их физических и химических характеристик. Выдвижение на первый план астрофизических проблем сопровождалось также интенсивным развитием таких отраслей астрономической науки, как звездная и внегалактическая астрономия.
Наряду с этим существенно совершенствовались и эмпирические методы астрономического познания. Астрономия стала всеволновой, т.е. астрономические наблюдения проводятся на всех диапазонах длин волн излучений (радио,- инфракрасный, оптический, ультрафиолетовый, рентгеновский и гамма - диапазоны). Появилась также возможность непосредственного исследования с помощью космических аппаратов и наблюдений космонавтов околоземного космического пространства, Луны и планет Солнечной системы.
Все это привело к значительному расширению наблюдаемой области Вселенной и открытию целого ряда необычных (и, как правило, неожиданных и во многом необъяснимых) явлений. Среди этих открытий особенное значение имеют нестационарные процессы во Вселенной:
Кроме того, к выдающимся астрономическим открытиям следует отнести обнаружение:
Попытки объяснить эти и другие новейшие открытия столкнулись с рядом принципиальных трудностей, преодоление которых связано с необходимостью совершенствования теоретико- методологического инструментария современной астрономии. Все это привело к значительному возрастанию количества разрабатываемых астрофизических и космологических моделей, концепций, опирающихся на разные принципы и не связанных пока единой фундаментальной теорией.
На этом фоне происходит интенсивная дифференциация и интеграция знаний о Вселенной. Выделяются не только новые отрасли теоретической и наблюдательной астрономии, но в связи с успехами космической техники возникают прикладные отрасли астрономии.
В то же время возрастает роль общетеоретических интегративных принципов, понятий, установок, которые формируются под влиянием математики, физики, других естественных и даже гуманитарных наук. Изменяется место астрономии в системе научного познания: она сближается не только с естественными и математическими, но и с гуманитарными науками, философией.
По сути, астрономия во второй половине ХХ века астрономия вступила в период научной революции, которая изменила способ астрономического познания – на смену классическому способу познания пришел "неклассический" способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания и астрономической картины мира.
Обзор современной астрономической картины мира показывает, что астрономия в XX в. кардинально преобразовала старые классические представления о Вселенной, ее структуре и эволюции, пережила глубокую научную революцию, которая изменила способ астрономического познания. На смену классического пришел «неклассический» способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания.
Основа астрономического познания – признание объективного существования предмета астрономической науки (космических тел, их систем и Вселенной в целом) и их принципиальной познаваемости научно-рациональными средствами (причем не только структурного, но и исторического аспекта Вселенной). Следовательно, можно говорить о полной победе материалистического принципа познаваемости природы, истории Вселенной в системе методологии астрономии XX в.
Эмпирическая основа современной астрономии – наблюдение во всеволновом диапазоне. Теоретические исследования и экспериментальные попытки регистрации гравитационных волн открывают перспективы развития гравитационной астрономии. Сведения о космосе несут космические лучи и нейтрино. Важная особенность наблюдений во внеоптических диапазонах состоит в том, что они дают информацию, как правило, о нестационарных процессах во Вселенной.
Теоретическая основа современной астрономии – не только классическая механика, но и релятивистская и квантовая механика, квантовая теория поля. Классическая механика не потеряла своего значения для астрономического познания (прежде всего, для объяснения процессов, происходящих в Солнечной системе). Как и прежде, все расчеты движений тел планетной системы и искусственных спутников Земли, Луны и планет, космических аппаратов, созданных человеком, осуществляются (в силу слабости релятивистских и квантовых эффектов для этих систем) на базе ньютоновской механики.
Физическая реальность состоит из трех качественно несводимых друг к другу уровней: микро-, макро- и мегамиров. В системе астрономического познания выделяются две большие подсистемы: во-первых, астрономические науки, изучающие закономерности космических тел и процессов макроуровня (небесная механика, астродинамика, астрометрия и др.); во-вторых, астрономические науки, изучающие космические процессы на уровне мегамира (внегалактическая астрономия, релятивистская космология и др.). Считается, что исследования носят космологический характер, если предмет изучения имеет линейные размеры, превышающие 109 пк; именно здесь проходит разграничительная линия между «обычным» астрономическим и космологическим масштабами.
В системе астрономического познания большую роль играет исследование закономерностей микромира, связанных с процессами излучения звезд, ранних этапов эволюции Вселенной и т.п., поэтому современная астрономия пользуется и аппаратом микрофизики (квантовая механика, квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика и др.). Вопрос о глубинных внутренних связях между микро-, макро- и мегамирами, о том, что на определенном уровне они представляют, собой некое (диалектическое) единство, также входит в поле зрения современной астрономии.
Вопрос о единственности Вселенной как объекта космологии в современной астрономии решается отнюдь не однозначно. Наряду с точкой зрения, что Вселенная как объект космологии – это наша Метагалактика в ее самых общих свойствах, существует мнение, что множество вселенных, порождаемых виртуальной «пеной» физического вакуума, могут сосуществовать друг с другом, а тезис об уникальности Вселенной должен рассматриваться как исторически относительный, определяемый уровнем практики.
Хотя эмпирических данных, подтверждающих представление о множественности вселенных, пока нет (более того, проблематична даже та конкретная логико-гносеологическая форма, в которой такой эмпирический базис может быть зафиксирован), тем не менее, такое представление вытекает из принципов инфляционной космологии.
Претерпевают значительные изменения трактовки сущности пространства и времени. С одной стороны, современная астрономия опирается на общую теорию относительности, в соответствии с которой пространственно-временные характеристики перестают быть фундаментальными, не зависимыми ни от чего понятиями физики.
Геометрические характеристики тел, их поведение и ход часов зависят прежде всего от гравитационных полей, которые в свою очередь создаются материальными телами. Важное значение имеет то обстоятельство, что в релятивистской физике такая характеристика, как «конечность-бесконечность», является вариантом (относительной величиной), значит, противопоставление конечности и бесконечности относительно – конечность пространства в одной системе не исключает его бесконечности в другой. Более того, относительны не только «конечность-бесконечность», но и топологические характеристики пространства-времени.
Это значит, что метрический и континуальный характер пространства-времени в нашей Вселенной относителен и возможны пространственно-временные организации вещества и поля с иными топологическими характеристиками.
С другой стороны, инфляционная космология допускает на ранних стадиях эволюции Вселенной раздувание физического вакуума со скоростью, на много порядков превышающей скорость света; стадия раздувания физического вакуума, наполненного скалярным полем, осуществляется без присутствия вещества и излучения, которые к тому времени еще не образовались
Современная астрономия теоретически и эмпирически обосновывает идею нестационарности Вселенной: мир астрономических объектов находится в состоянии постоянного качественного изменения, развития. Идея развития пронизывает всю современную астрономию. Эта идея носит не умозрительный характер, а воплощается в конкретных астрофизических и космологических моделях.
Общая идея о нестационарности Вселенной (пространственной и структурной) конкретизируется в следующих методологических установках:
Информация о работе Современная астрономическая картина мира