Автор работы: Пользователь скрыл имя, 28 Января 2014 в 21:19, контрольная работа
Первоначальный смысл симметрии – это соразмерность, сходство, подобие, порядок, ритм, согласование частей в целостной структуре. Симметрия и структура неразрывно связаны. Если некоторая система имеет структуру, то она обязательно имеет и некоторую симметрию. Идея симметрии имеет исключительное значение и как ведущее начало в осмыслении структуры естественнонаучного знания. Едва ли можно оспаривать эвристическую ценность и методологическое значение принципа симметрии. Известно, что при решении конкретных научных проблем этот принцип играет роль критерия истинности.
Введение 2
1. Симметрия как эстетический критерий. Операции и виды симметрии. Принципы симметрии. 4
2. Разновидность симметрии и асимметрии в природе - свойства материального мира. Понятие симметрии и асимметрии в биологии. 10
3. Золотое сечение – закон проявления гармонии природы. 20
Заключение 23
Список литературы 25
Живая природа в любых ее проявлениях обнаруживает одну и ту же цель, один и тот же смысл жизни: всякий живой предмет повторяет себя в себе подобном. Главной задачей жизни является ЖИЗНЬ, а доступная форма бытия заключается в существовании отдельных целостных организмов. И не только примитивные организации, но и сложные космические системы, такие как человек, демонстрируют поразительную способность буквально повторять из поколения в поколение одни и те же формы, одни и те же скульптуры, черты характера, те же жесты, манеры.
Какое из чудес могло бы с большей силой поразить человеческое воображение, чем появление новой жизни? Пространство, которое было ничем, становится деревом, яблоком, человеком. Возникновение живого существа — явление целостное, это таинство, так как человек не умеет познавать неделимое, не расчленяя его.
Природа обнаруживает подобие как свою глобальную генетическую программу. Ключ в изменении тоже заключается в подобии. Подобие правит живой природой в целом. Геометрическое подобие — общий принцип пространственной организации живых структур. Лист клена подобен листу клена, березы — березе. Геометрическое подобие пронизывает все ветви древа жизни.
Какие бы метаморфозы ни претерпевала в процессе роста в дальнейшем живая клетка, принадлежащая целостному организму и выполняющая функцию его воспроизведения в новый, особенный, единичный объект бытия, она является точкой «начала», которая в итоге деления окажется преобразована в объект, подобный первоначальному. Этим объединяются все виды живых структур, по этой причине и существуют стереотипы жизни: человек, кошка, стрекоза, дождевой червь. Они бесконечно интерпретируются и варьируются механизмами деления, но остаются теми же стереотипами организации, формы и поведения.
Так же, как подобны одно
другому целостные живые
Можно даже выделить, что функция зрения в целом, как и детальная структура органов зрительного восприятия, подчинена глобальному принципу организации жизни — принципу геометрического подобия.
Определяя пространственную организацию живых организмов, прямой угол, который, кстати, правит физическими процессами, организует жизнь силами гравитации. Биосфера (пласт бытия живых существ) ортогональ-на вертикальной линии земного тяготения. Вертикальные стебли растений, стволы деревьев, горизонтальные поверхности водных пространств и в целом земная кора составляют прямой угол. Прямой гол является объективной реальностью зрительного восприятия: выделение прямого угла осуществляют структуры сетчатки в цепи нейронных связей. Зрение чутко реагирует на кривизну прямых линий, отклонения от вертикальности и горизонтальности. Прямой угол, лежащий в основе треугольника, правит пространством симметрии подобий, а подобие, как уже говорилось, — есть цель жизни. И сама природа и первородная часть человека находятся во власти геометрии, подчинены симметрии и как сущности и как символы. Как бы ни были выстроены объекты природы, каждый имеет свой основной признак, который отображен формой, будь то яблоко, зерно ржи или человек.
2. Разновидность симметрии и асимметрии в природе - свойства материального мира. Понятие симметрии и асимметрии в биологии.
Симметрия в природе
Внимательно приглядевшись к обступающей нас природе, можно увидеть общее даже в самых незначительных вещах и деталях. Форма листа дерева не является случайной: она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок, одна из которых расположена зеркально относительно другой. Симметрия листка упорно повторяется, будь то гусеница, бабочка, жучок и т.п.
Радиальнотлучевой симметрией обладают цветы, грибы, деревья, фонтаны. Здесь можно отметить, что на не сорванных цветах и грибах, растущих деревьях, бьющем фонтане или столбе паров плоскости симметрии ориентированы всегда вертикально.
Таким образом, можно сформулировать в несколько упрощенном и схематизированном виде общий закон, ярко и повсеместно проявляющийся в природе: все, что растет или движется по вертикали, т.е. вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии, симметрии листка. Этому всеобщему закону подчиняются не только цветы, животные, легкоподвижные жидкости и газы, но и твердые, неподатливые камни. Этот закон влияет на изменчивые формы облаков. В безветренный день они имеют куполовидную форму с более или менее ясно выраженной радиально-лучевой симметрией.
Влияние универсального закона симметрии является по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти.
Асимметрия в живой природе
Молекулярная асимметрия была обнаружена и открыта Л. Пастером, которому удалось выделить левые и правые кристаллы винной кислоты. Асимметрия кристаллов кварца—в его оптической активности. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выраженный асимметричный характер.
Если считать, что равновесие характеризуется состоянием покоя и симметрии, а асимметрия связана с движением и неравновесным состоянием, то понятие равновесия играет в биологии не менее важную роль, чем в физике. Всеобщий закон биологии — принцип устойчивого термодинамического равновесия живых систем, определяет специфику биологической формы движения материи. Действительно, устойчивое термодинамическое равновесие (асимметрия) является основным принципом, который не только охватывает все уровни познания живого, но и выступает в качестве ключевого принципа постановки и решения происхождения жизни на земле.
Понятие равновесия может быть рассмотрено не только в статическом аспекте, но и в динамическом. Симметричной считается среда, находящаяся в состоянии термодинамического равновесия, среда с высокой энтропией и максимальным беспорядком частиц. Асимметричная среда характеризуется нарушением термодинамического равновесия, низкой энтропией и высокой упорядоченностью структуры.
При рассмотрении целостного объекта картина меняется. Симметричные системы, например кристаллы, характеризуются состоянием равновесия и упорядоченности. Но асимметричные системы, которыми являются живые тела, также характеризуются равновесием и упорядоченностью с тем только различием, что в последнем случае имеем дело с динамической системой.
Таким образом, устойчивое термодинамическое равновесие (или асимметрия) статической системы есть другая форма выражения устойчивого динамического равновесия, высокой упорядоченности и структурности организма на всех его уровнях. Такие системы называются асимметричными динамическими системами. Здесь нужно только указать, что структурность носит динамический характер.
Понятие равновесия тоже не является только статическим, имеется и динамический аспект. Состояние симметрии и движения не есть нарушение равновесия вообще, а есть состояние динамического равновесия. Здесь можно говорить о мере симметрии вообще, подобно тому, как в физике оперируют понятием движения.
Асимметрия как разграничивающая линия между живой и неживой природой
Пастером было установлено, что все аминокислоты и белки, входящие в состав живых организмов, являются «левыми», т.е. отличаются оптическими свойствами. Объяснить происхождение «левизны» живой природы он пытался асимметрией, глобальной анизотропией пространства.
Вселенная есть асимметричное целое, и жизнь в таком виде, в каком она представляется, должна быть функцией асимметрии Вселенной и вытекающих отсюда следствий. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выраженный асимметричный характер. Придавая большое значение асимметрии живого вещества, Пастер считал ее именно той единственной, четко разграничивающей линией, которую в настоящее время можно провести между живой и неживой природой, т.е. тем, что отличает живое вещество от неживого. Современная наука доказала, что в живых организмах, как и в кристаллах, изменениям в строении отвечают изменения свойств.
Для неживой природы характерно преобладание симметрии, при переходе от неживой к живой природе на микроуровне преобладает асимметрия. Асимметрия на уровне элементарных частиц — это абсолютное преобладание в нашей части Вселенной частиц над античастицами.
Все это говорит о большом значении симметрии и асимметрии в живой и неживой природе, показывает их связь с основными свойствами материального мира, со структурой материальных объектов на микро-, макро- и мегауровнях, со свойствами пространства и времени как форм существования материи. Накопленные наукой факты показывают объективный характер симметрии и асимметрии как одних из важнейших характеристик движения и структуры материи, пространства и времени, наряду с такими характеристиками, как прерывное и непрерывное, конечное и бесконечное.
Развитие современного естествознания приводит к выводу, что одним из наиболее ярких проявлений закона единства и борьбы противоположностей является единство и борьба симметрии и асимметрии в структуре симметрии и в процессах, имеющих место в живой и неживой природе, что симметрия и асимметрия являются парными относительными категориями.
Таким образом, симметрия играет роль в сфере математического знания, асимметрия — в сфере биологического знания. Поэтому принцип симметрии — это единственный принцип, благодаря которому есть возможность отличать вещество биогенного происхождения от вещества неживого. Парадокс: мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличать живое от неживого.
Понятие симметрии и асимметрии в биологии.
На явление симметрии в живой природе обратили внимание ещё в Древней Греции пифагорейцы (5 в. до н. э.) в связи с развитием ими учения о гармонии. В 19 в. появились единичные работы, посвященные симметрии растений (французские учёные О. П. Декандоль, О. Браво), животных (немецкий — Э. Геккель), биогенных молекул (французские — А. Вешан, Л. Пастер и др.). В 20 в. биообъекты изучали с позиций общей теории симметрии (советские учёные Ю. В. Вульф, В. Н. Беклемишев, Б. К. Вайнштейн, голландский физикохимик Ф. М. Егер, английский кристаллографы во главе с Дж. Берналом) и учения о правизне и левизне (советские учёные В. И. Вернадский, В. В. Алпатов, Г. Ф. Гаузе и др.; немецкий учёный В. Людвиг). Эти работы привели к выделению в 1961 особого направления в учении о симметрии — биосимметрики.
Наиболее интенсивно
изучалась структурная
В живой природе
(как и в неживой) из-за
Асимметрия характерна для листьев большинства видов растений, двусторонняя симметрия — до известной степени для внешней формы тела человека, позвоночных животных и многих беспозвоночных. У подвижных организмов такая симметрия, по-видимому, связана с различиями их движения вверх-вниз и вперёд-назад, тогда как их движения направо-налево одинаковы. Нарушение у них билатеральной симметрии неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое. В 50—70-х гг. 20 в. интенсивному изучению (прежде всего в СССР) подверглись т. н. диссимметрические биообъекты (диссимметрические D- и L-биообъекты: 1. цветки анютиных глазок; 2. раковины прудовика; 3. молекулы винной кислоты; 4. листья бегонии.). Последние могут существовать по крайней мере в двух модификациях — в форме оригинала и его зеркального отражения (антипода). При этом одна из этих форм (неважно какая) называется правой или D (от лат. dextro), другая — левой или L (от лат. laevo). При изучении формы и строения D- и L-биообъектов была развита теория диссимметризующих факторов, доказывающая возможность для любого D- или L-объекта двух и более (до бесконечного числа) модификаций (Лист липы, иллюстрирующий возможность существования диссимметрических объектов более чем в двух модификациях. Для листа липы диссфакторы — это 4 морфологических признака: преимущественные ширина и длина, асимметричные жилкование и загиб главной жилки. Так как каждый из диссфакторов может проявляться двояко — в (+) или (-) —формах — и соответственно приводить к D- или L-мoдификациям, то число возможных модификаций будет 24 = 16, а не две); одновременно в ней содержались и формулы для определения числа и вида последних. Эта теория привела к открытию т. н. биологической изомерии (разных биообъектов одного состава.