Автор работы: Пользователь скрыл имя, 02 Ноября 2014 в 22:05, контрольная работа
Со временем открытия второго закона термодинамики встал вопрос о том, как можно согласовать возрастание со временем энтропии в замкнутых системах с процессами самоорганизации в живой и не живой природе. Долгое время казалось, что существует противоречие между выводом второго закона термодинамики и выводами эволюционной теории Дарвина, согласно которой в живой природе благодаря принципу отбора непрерывно происходит процесс самоорганизации.
ВВЕДЕНИЕ 3
1.Термодинамика как наука.
1.1. Основные термины и положения термодинамики.
1.2. «Всеобщий закон биологии» Бауэра.
1.3.Общие сведения о неравновесной термодинамике.
1.4 Синергетика и самоорганизующиеся системы
Заключение
Список используемой литературы
Как итог развития нелинейной неравновесной термодинамики появилась совершенно новая научная дисциплина синергетика - наука о самоорганизации и устойчивости структур различных сложных неравновесных систем: физических, химических, биологических и социальных.
Синергетика потребовала создание нового математического аппарата, отличного от традиционных методов математической физики. Если ранее полагали, что простые универсальные законы существуют, познаваемы, а их использование будет исключительно полезным; как бы ни были сложны уравнения, следующие из этих законов, сколько бы их ни было, их удастся решить. Детерминизм задавал уверенность в том, что можно, решив уравнения, заглянуть как угодно далеко в будущее и в прошлое. Очередную поддержку такой подход получил с внедрением компьютеров. Мощная вычислительная техника позволила решать системы из тысяч уравнений. Однако революционных прорывов не случилось, к тому же оказалось, что современная математика позволяет решить далеко не все задачи. Например, в теории динамического хаоса – важной области нелинейной науки – было показано, что даже для довольно простых детерминированных систем (в которых будущее однозначно определяется настоящим) существует горизонт прогноза, заглянуть за который нельзя, какую бы мощную вычислительную технику и какие бы эффективные алгоритмы исследователи ни использовали. Кроме того, теория самоорганизованной критичности показывает, что для многих сложных иерархических систем типичны редкие катастрофические события. Поэтому определить необходимые параметры, опираясь на предысторию, для таких объектов достаточно сложно.
Системный анализ в свое время позволил продвинуться в изучении сложных систем. Но он хоть и системный, но анализ, т.е. способ выделения отдельных свойств и качеств. В то же время остро ощущается необходимость в системном, целостном представлении об объекте. С этой целью был создан системный синтез - составная часть синергетики. Он позволил прояснить каким образом происходит процесс самоорганизации в природе, и можно ли его как-то скопировать для развития компьютерных систем. Системный синтез облегчает выбор стратегии развития, позволяет перейти от баз данных к базам знаний, осуществить самоорганизацию в пространстве знаний и навыков.
1.4 Синергетика и самоорганизующиеся системы
Под синергизмом понимают совместное действие для достижения общей цели, основанное на принципе, что целое представляет нечто большее, чем сумма его частей. Синергизм означает превышение совокупным результатом суммы слагающих его факторов. Синергический эффект бывает как положительным (2+2>4), так и отрицательным, вредным (2+2<4). В медицине синергизм - объединенное действие двух лекарственных препаратов, которое оказывается сильнее, чем сумма действий этих двух лекарств, при их раздельном использовании. В политике синергизм - комбинированное воздействие на политические, социальные, экономические организации, институты, системы, при котором суммированный эффект превышает действие, совершаемое каждым компонентом в отдельности. Примерами синергизма являются: соединение двух и более кусков радиоактивного материала, при превышении критической массы дают выделение энергии, превосходящее излучение энергии простого суммирования отдельных кусков; знания и усилия нескольких человек можно организовывать таким образом, что они взаимно усиливаются; прибыль после слияния двух компаний может превосходить сумму прибылей этих компаний до объединения; обмен идеями и т.п.
На синергизме и синергетических эффектах строится наука синергетика.
Синергетика – это теория самоорганизации в системах различной природы. Эта наука имеет дело с явлениями и процессами, в результате которых у системы – у целого – могут появиться свойства, которыми не обладает ни одна из частей. Поскольку речь идёт о выявлении и использовании общих закономерностей в различных областях, то этот подход предполагает междисциплинарность, которая означает сотрудничество в разработке синергетики представителей различных научных дисциплин.
Самоорганизующаяся система — динамическая адаптивная система, в которой запоминание информации (накопление опыта) выражается в изменении структуры системы.
Адаптивная система (самоприспосабливающаяся система) — система, автоматически изменяющая данные алгоритма своего функционирования и (иногда) свою структуру с целью сохранения или достижения оптимального состояния при изменении внешних условий.
Саморазвивающаяся система — динамическая система, самостоятельно выбирающая цели своего развития и критерии их достижения; изменяет свои параметры, структуру и другие характеристики в заданном направлении.
Обычно под синергетикой понимают энергию совместного действия. Это - междисциплинарное направление, которое занимается изучением систем, состоящих из многих подсистем различной природы (электронов, атомов, молекул, клеток, нейронов, механических элементов, органов животных, людей, транспортных средств и т.п.), и выявлением того, каким образом взаимодействие таких подсистем приводит к возникновению пространственных, временных или пространственно-временных структур в макроскопическом масштабе. Синергетика представляет собой новую обобщающую науку, изучающую основные законы самоорганизации сложных систем. В неё входят такие области, как нелинейная динамика, хаос, фракталы, катастрофы, бифуркации, волны, солитоны, полевые эффекты и т.д. Синергетика предоставляет язык, на котором могут общаться математики, физики, химики, биологи, психологи и др.
Синергетика изучает многовариантное и неоднозначное поведение многоэлементных структур, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особых режимов с обострением и наличия более одного устойчивого состояния. К этим системам неприменимы ни второе начало термодинамики, ни теорема Пригожина о минимуме скорости производства энтропии; в них происходит образование новых структур и систем, в том числе и более сложных, чем исходные. В отдельных случаях образование новых структур имеет регулярный, волновой характер, и тогда они называются автоволновыми процессами.
К интересам синергетики относят явления, возникающие от совместного действия нескольких разных факторов, в то время, как каждый фактор в отдельности к этому явлению не приводит. Синергетику также можно определить как науку о самоорганизации, под которой понимают самопроизвольное усложнение формы, или структуры системы при медленном и плавном изменении её параметров (пример - ячейки Бенара). Иногда под синергетикой понимают науку о неожиданных явлениях, поскольку любое качественное изменение состояния системы производит впечатление неожиданного (хотя причина известна - неустойчивость). Анализ, вскрывающий причину неожиданного явления, и составляет предмет синергетики. Математический аппарат, используемый в синергетике, - теория динамических систем.
Как известно, природные системы устойчивы относительно внешних воздействий, обладают свойствами самообновляемости, самоусложнению, росту, развитию. Они характеризуются согласованностью всех составных частей. Напротив, для техногенных систем свойственны резкие ухудшения функционирования даже при сравнительно небольшом изменении внешних воздействий или ошибках в управлении. Поэтому желательно использовать опыт природы в деятельности человека. Отсюда вытекает одна из задач синергетики - выяснение законов возникновения упорядоченности, её развития и самоусложнения. Проблема оптимальной упорядоченности и организации важна при решении энергетических, экологических и других глобальных проблем.
Математический аппарат синергетики достаточно сложен, но всё же недостаточен для решения задач, стоящих перед этой наукой. Как известно, традиционная математическая физика использует линейные дифференциальные уравнения в частных производных, т.е. уравнений с неизвестными в первой степени. Системы таких уравнений описывают процессы, которые с увеличением интенсивности внешних воздействий претерпевают только количественные изменения, а новых качеств не возникает. Они применяются в квантовой механике, электродинамике, теории волн, сопротивлении материалов, теплопроводности и диффузии. Однако существуют явления, которые при интенсивном внешнем воздействии приобретают новые качества и начинают протекать по изменённым законам. Описываются они нелинейными уравнениями, решение которых аналитическими методами невозможно, а численными - затруднительно. Поэтому одна из серьёзных задач синергетики - разработка адекватного математического аппарата, способного описывать эволюцию сложных систем.
Достаточно важно, что синергетика опирается на методы, применимые к различным наукам и изучает многокомпонентные системы безотносительно к их природе. Кроме того, она занимается многими областями, оказавшимися за пределами традиционных наук. Например, термодинамика и теория информации изучают статику, тогда как для синергетики основный интерес представляет динамика. Неравновесные фазовые переходы синергетических систем, включая колебания, пространственно-временные структуры и хаос, отличаются несравненно большим разнообразием, чем фазовые переходы систем, находящихся в состоянии теплового равновесия. В отличие от кибернетики, занимающейся разработкой алгоритмов и методов, позволяющих управлять системой так, чтобы та функционировала заданным образом, синергетика изучает самоорганизацию системы при произвольном изменении управляющих параметров. В отличие от теории динамических систем, которая игнорирует флуктуации в точках бифуркации, синергетика изучает стохастическую динамику во всей её полноте в подпространстве зависящих от времени управляющих параметров.
Важная особенность синергетических систем состоит в том, что ими можно управлять извне, изменяя действующие на системы факторы. Например, скорость роста клеток можно регулировать, обрабатывая клетки различными химическими веществами. Временная эволюция синергетических систем зависит от причин, которые не могут быть предсказаны с абсолютной точностью. Непредсказуемость поведения таких систем связана не только с неполнотой информации о состоянии из многочисленных подсистем и квантовыми флуктуациями, но и с тем, что их эволюция очень чувствительна к начальным условиям. Даже небольшое различие в начальных условиях коренным образом изменяет последующую эволюцию системы. В процессе временной эволюции синергетическая система, находящаяся в одном состоянии, переходит в новое состояние, при этом не все параметры состояния имеют одинаковое значение, и одни параметры состояния можно выразить через другие, в результате чего количество независимых переменных уменьшается. Синергетика - наука, направленная на согласованность взаимодействия частей при образовании структуры как единого целого.
Теория синергетики в основном состоит из нескольких частей:
1. Статистическая
физика в приложении к
2. Термодинамика открытых систем в приложении
к изучению стационарных состояний, сохраняющих
устойчивость в определённом диапазоне
внешних условий, поиск условий самоорганизации,
т.е. возникновения упорядоченных структур
из неупорядоченных при диссипации энергии.
3. Теория динамического хаоса, исследующая
сверхсложную, скрытую упорядоченность
поведения наблюдаемой системы; например,
явление турбулентности.
4. Теория катастроф, базирующаяся на нелинейных
дифференциальных уравнениях, определяющих
состояния далёкие от равновесия и зависящие
от входящих параметров. С её помощью определяются
границы устойчивости и изменения структуры
состояний. Исследует поведение самоорганизующихся
систем в терминах бифуркации, аттрактора,
неустойчивости.
5. Теория фракталов, занимающаяся изучением
сложных самоподобных структур, часто
возникающих в результате самоорганизации;
сам процесс самоорганизации также может
быть фрактальным.
Математический аппарат синергетики скомбинирован из разных отраслей теоретической физики: нелинейной неравновесной термодинамики, теории катастроф, теории групп, тензорного анализа, дифференциальной топологии неравновесной статистической физики. Методология синергетики распространяется на многие науки: от физики твёрдого тела и лазерной техники и до биофизики и проблем искусственного интеллекта. Известны такие разделы синергетики, как лингвистическая синергетика и прогностика, семантическая синергетика и др.
Феномен появления упорядоченных структур трактуется синергетикой как всеобщий механизм наблюдаемого в природе направления эволюции: от элементарного и примитивного — к сложносоставному и более совершенному. С мировоззренческой точки зрения синергетику позиционируют как универсальную теорию эволюции, дающую единую основу для описания механизмов возникновения любых новаций, подобно тому, как некогда кибернетика определялась, как «универсальная теория управления», одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и т. д. Однако время показало, что всеобщий кибернетический подход оправдал далеко не все возлагавшиеся на него надежды. Аналогичным образом, и расширительное толкование применимости методов синергетики также подвергается критике.
Дело в том, что область исследований синергетики чётко не определена и вряд ли может быть ограничена, так как её интересы распространяются на все отрасли естествознания. Общим признаком является рассмотрение динамики любых необратимых процессов и возникновения принципиальных новаций.
Синергетика находится на начальной стадии развития: неизвестно - станет ли она законченной наукой или постепенно свернётся, как это произошло с кибернетикой. Сейчас этим термином пользуются далеко не все учёные. Так, представители школы Пригожина, усилиями которых разрабатывалась математическая теория поведения диссипативных структур, и создавались мировоззренческие основания теории самоорганизации, как парадигмы универсального эволюционизма, никогда не используют термин «синергетика». О коллективных явлениях они не вспоминают, а предпочитают называть разработанную ими методологию «теорией диссипативных структур» или просто "неравновесной термодинамикой", подчёркивая преемственность своей школы пионерским работам Ларса Онзагера в области необратимых химических реакций.
Противники создания синергетики, как новой науки указывают на то, что неологизмы от слова "синергена" уже неоднократно использовались. Кроме того, термин синергетика имеет два разных значения: содействие и сотрудничество, что вредно при введении специальной науки. К тому же, многое из того, что стали относить к синергетике, давно принадлежит системному анализу.
Известно, что между поведением совершенно различных систем, изучаемых различными науками, существуют аналогии. Изучаемые синергетикой системы как раз и относятся к компетенции различных наук, причём одновременно другие науки привносят в синергетику свои идеи. В настоящее время назрела острая необходимость в создании особой науки, которая объединила бы науки, интересующиеся самоорганизацией систем. Но станет ли такой наукой синергетика? Это вопрос...