Автор работы: Пользователь скрыл имя, 24 Сентября 2015 в 13:54, контрольная работа
Биоэнергетика - научная дисциплина, исследующая энергетические процессы в клетках, тканях, особях, экосистемах и т.д. (Cловарь по естественным наукам.)
Биоэнергетика - (1) дисциплина, изучающая процессы энергетических трансформаций в процессе существования биологических организмов и функционирования биосферы в целом; (2) отрасль знания о едином информационном поле, о его взаимодействии с биологическими объектами всех уровней сложности. (Энциклопедия эзотеризма)
Введение …………………………………………………………………………………………2
1. Энергетическая проблема в современном мире…………………..………………………...3
2. Биоэнергетика: понятие и достижения…………………………………………………….4
3. Биотопливо как продукт биоэнергетики……………………………………………...…….8
Список использованных источников
и литературы……………………
Оглавление
Введение ………………………………………………………………………………
1. Энергетическая
проблема в современном мире………
2. Биоэнергетика:
понятие и достижения…………………………
3. Биотопливо
как продукт биоэнергетики……………
Список использованных источников
и литературы……………………………………………………
Введение
Не совсем понятное, очень наукообразное понятие “биоэнергетика” уже стало неотъемлимой частью нашей жизни. Наравне с такими словами как “аура”, “эзотерика”, “нирвана”, “рейки”, “прана” и т.д. Эти выражения звучат довольно часто, говорят об этом совершенно разные люди. Только смысл, который вкладывается в них, совпадает не всегда. Человеческие представления о “биоэнергетике” достаточно различны. По каким-то причинам выражение Биоэнергетика вызывает ассоциации именно с экстрасенсами. Это далеко не так.
Практически все люди думают: "Биоэнергетика - что-то вроде экстрасенсорных способностей, которыми обладают исключительно одаренные люди". Люди, увидев злого человека, разумно полагают что энергетика у него также злая, нехорошая, от него следует ожидать исключительно чего-то плохого, негативного. Например сглаза или порчи, “энергетического вампиризма” (отбор энергии) и подобных вещей. А добрый человек излучает добро, часто служит аккумулятором, он готов отдавать энергию.
Хотя понятие биоэнергетики вошло в наш быт, оно осталось до конца непонятым. Каждая домохозяйка, каждый школьник, которые иногда смотрят телевизор, могут объяснить что у каждого из нас существует какая-то оболочка, может быть даже их несколько. Также они расскажут что Аура может быть здоровой, а может быть больной. Каждый человек хочет иметь здоровую ауру, но мало кто знает, как можно это сделать, так как не рассматривает биоэнергетику применительно к себе.
Вот как объясняют понятие Биоэнергетики в словарях:
Биоэнергетика - научная дисциплина, исследующая энергетические процессы в клетках, тканях, особях, экосистемах и т.д. (Cловарь по естественным наукам.)
Биоэнергетика - (1) дисциплина, изучающая процессы энергетических трансформаций в процессе существования биологических организмов и функционирования биосферы в целом; (2) отрасль знания о едином информационном поле, о его взаимодействии с биологическими объектами всех уровней сложности. (Энциклопедия эзотеризма)
1. Энергетическая проблема в современном мире
В мире все больше говорят о необходимости замены нефти, угля и газа на биотоплива. Отголоски уже доходят и до России, где, впрочем, пока немногие понимают, что же это такое на самом деле. В прессе иногда можно встретить рассказы о чудесных веществах, совершенно не загрязняющих окружающую среду и более эффективных, чем бензин, керосин и дизельное топливо.
В действительности ничего принципиально нового в биотопливах нет. Биотоплива использовались тысячелетиями и для многих остаются единственным источником тепла и средством приготовления пищи. Главным биотопливом были и остаются дрова, причем их экологичность совсем не очевидна - достаточно лишь вспомнить о неконтролируемой вырубке лесов.
Впрочем, теперь под словом "биотоплива" редко подразумевают дрова. Речь, как правило, идёт о более высокотехнологичных продуктах, получаемых из сельскохозяйственных культур или отходов переработки растительного и животного сырья. С возобновляемостью у них все в порядке, чуть сложнее обстоит дело с вредными выбросами. Сторонники говорят, что биотоплива меньше загрязняют атмосферу, а противники возражают, что при сгорании биотоплив выделяются те же продукты, что и при сжигании ископаемых топлив.
Истина же, как водится, лежит посередине. Действительно, в процессе сгорания и тех, и других топлив образуются, главным образом, углекислый газ, вода и несколько примесей, многие из которых являются вредными: моноксид углерода, оксиды азота, углеводороды и т.п. Наибольшее внимание обычно уделяется вредным компонентам выхлопа и одному из виновников парникового эффекта - углекислому газу.
Одним из главных преимуществ биотоплив называют сокращение выбросов парниковых газов. Это, однако, не означает, что при сгорании биотоплив образуется меньше диоксида углерода (хотя и такое возможно). При сгорании биотоплива в атмосферу возвращается углерод, который ранее поглотили растения, поэтому углеродный баланс планеты остаётся неизменным. Ископаемые топлива - совсем другое дело: углерод в их составе миллионы лет оставался "законсервированным" в земных недрах. Когда он попадает в атмосферу, концентрация углекислого газа повышается.
В том, что касается вредных выбросов, биотоплива несколько выигрывают у нефтяных. Большинство исследований показывают, что биотоплива обеспечивают снижение выбросов моноксида углерода и углеводородов. Кроме того, биотоплива практически не содержат серы. Вместе с тем, несколько увеличивается выброс оксидов азота, вдобавок, при неполном сгорании многих биотоплив в атмосферу попадают альдегиды. Но, в целом, по уровню вредных выхлопов биотоплива выигрывают у нефтяных.
Видов топлив из биомассы предлагается великое множество. Это и биогаз - метан, получаемый за счет разложения органических остатков (например, навоза) бактериями, и твердые топлива, но больше всего разговоров идет о биотопливах для автомобилей: этаноле и "биодизеле".
2. Биоэнергетика: понятие и достижения
Биоэнергетика, биологическая энергетика, изучает механизмы преобразования энергии в процессах жизнедеятельности организмов. Иначе говоря, Биоэнергетика рассматривает явления жизнедеятельности в их энергетическом аспекте. Методы и подходы к изучаемым явлениям, применяемые в биоэнергетике, - физико-химические, объекты и задачи - биологические. Таким образом, биоэнергетика стоит на стыке этих наук и является частью молекулярной биологии, биофизики и биохимии.
Началом биоэнергетики можно считать работы немецкого врача Ю.Р. Майера, открывшего закон сохранения и превращения энергии (1841) на основе исследования энергетических процессов в организме человека. Суммарное изучение процессов, являющихся источниками энергии для живых организмов, и энергетического баланса организма, его изменений при различных условиях (покой, труд разной интенсивности, окружающая температура) долгое время являлось основным содержанием биоэнергетики. В середине 20 в., в связи с общим направлением развития биологических наук, центральное место в биоэнергетике заняли исследования механизма преобразования энергии в живых организмах.
Все исследования в области биоэнергетики основываются на единственно научной точке зрения, согласно которой к явлениям жизни полностью применимы законы физики и химии, а к превращениям энергии в организме - основные начала термодинамики. Однако сложность и специфичность биологических структур и реализующихся в них процессов обусловливают ряд глубоких различий между биоэнергетикой и энергетикой неорганического мира, в частности технической энергетикой. Первая фундаментальная особенность биоэнергетики заключается в том, что организмы - открытые системы, функционирующие лишь в условиях постоянного обмена веществом и энергией с окружающей средой. Термодинамика таких систем существенно отличается от классической. Основополагающее для классической термодинамики понятие о равновесных состояниях заменяется представлением о стационарных состояниях; второе начало термодинамики (принцип возрастания энтропии) получает иную формулировку в виде Пригожина теоремы. Вторая важнейшая особенность биоэнергетики связана с тем, что процессы в клетках протекают в условиях отсутствия перепадов температуры, давления и объёма; в силу этого переход теплоты в работу в организме невозможен и тепловыделение представляет невозвратимую потерю энергии. Поэтому в ходе эволюции организмы выработали ряд специфических механизмов прямого преобразования одной формы свободной энергии в другую, минуя её переход в тепло. В организме лишь небольшая часть освобождающейся энергии превращается в тепло и теряется. Большая её часть преобразуется в форму свободной химической энергии особых соединений, в которых она чрезвычайно мобильна, т.е. может и при постоянной температуре превращаться в иные формы, в частности совершать работу или использоваться для биосинтеза с весьма высоким кпд, достигающим, например при работе мышцы, 30%.
Одним из основных результатов развития биоэнергетики в последние десятилетия является установление единообразия энергетических процессов во всём живом мире - от микроорганизмов до человека. Едиными для всего растительного и животного мира оказались и те вещества, в которых энергия аккумулируется в подвижной, биологически усвояемой форме, и процессы, с помощью которых такое аккумулирование осуществляется. Такое же единообразие установлено и в процессах использования аккумулированной в этих веществах энергии. Например, структура сократительных белков и механизм механо-химического эффекта (т.е. превращения химической энергии в работу) в основном одни и те же при движении жгутиков у простейших, опускании листиков мимозы или при сложнейших движениях птиц, млекопитающих и человека. Подобное единообразие характерно не только для явлений, изучаемых биоэнергетикой, но и для других присущих всему живому функций: хранения и передачи наследственной информации, основных путей биосинтеза, механизма ферментативных реакций.
Веществами, через которые реализуется энергетика организмов, являются макроэргические соединения, характеризующиеся наличием фосфатных групп. Роль этих соединений в процессах превращения энергии в организме впервые установил, изучая мышечное сокращение, советский биохимик В.А. Энгельгардт. В дальнейшем работами многих исследователей было показано, что эти соединения участвуют в аккумуляции и трансформации энергии при всех жизненных процессах. Энергия, освобождающаяся при отщеплении фосфатных групп, может использоваться для синтеза биологически важных веществ с повышенным запасом свободной энергии и для процессов жизнедеятельности, связанных с превращением свободной химической энергии в работу (механическую, активного переноса веществ, электрическую и т.д.). Важнейшим из этих соединений веществом, играющим для всего живого мира роль почти единственного трансформатора и передатчика энергии, является аденозинтрифосфорная кислота - АТФ (см. Аденозинфосфорные кислоты), расщепляющаяся до аденозиндифосфорной кислоты (АДФ) или аденозинмонофосфорной кислоты (АМФ). Гидролиз АТФ, т.е. отщепление от неё конечной фосфатной группы, протекает по уравнению:
АТФ + H2O ® АДФ + фосфат и сопровождается уменьшением свободной энергии на значение DF. Если эта реакция протекает при концентрации всех реагентов и продуктов в 1,0 моль при 25°С и pH 7,0, то свободная энергия АДФ оказывается меньше свободной энергии АТФ на 29,3 кдж (7000 кал). В клетке это изменение свободной энергии больше: DF=50 кдж/моль (12 000 кал/моль). Значения DF для реакции АТФ®АДФ выше, чем у большинства реакций гидролиза. Макроэргическими называют и сами связи третьей (конечной) и второй фосфатных групп в молекуле АТФ и аналогичные связи в других макроэргических соединениях. Эти связи обозначают знаком ~ (тильда); например, формулу АТФ можно записать так: аденин - рибоза - фосфат ~ фосфат ~ фосфат. Говоря об энергии макроэргических связей, в биоэнергетике имеют в виду не действительную энергию ковалентной связи между атомами фосфора и кислорода (или азота), как это принято в физической химии, а лишь разность между значениями свободной энергии (DF) исходных реагентов и продуктов реакций гидролиза АТФ или других аналогичных реакций. "Энергия связи" в этом смысле, строго говоря, не локализована в данной связи, а характеризует реакцию в целом.
Энергия макроэргических связей АТФ является универсальной формой запасания свободной энергии для всего живого мира: все преобразования энергии в процессах жизнедеятельности осуществляются через аккумуляцию энергии в этих связях и её использование при их разрыве. Значение DF для этих реакций представляет собой как бы "биологический квант" энергии, т.к. все преобразования энергии в организмах происходят порциями, примерно равными DF. При ферментативном гидролизе АТФ в клетке отщепляющаяся фосфатная группа всегда переносится на субстрат, запас энергии в котором оказывается в результате больше, чем в исходном соединении.
Обмен веществ (метаболизм) в клетке состоит из непрерывно совершающихся распада сложных веществ до более простых (катаболические процессы) и синтеза более сложных веществ (анаболические процессы). Катаболические процессы являются экзергоническими, т.е. идут с уменьшением свободной энергии (DF<0); анаболические процессы - эндергонические, они протекают с увеличением свободной энергии (DF>0). Согласно общим законам термодинамики, экзергонические процессы могут протекать спонтанно, самопроизвольно, процессы же эндергонические требуют притока свободной энергии извне. В клетке это осуществляется благодаря сопряжению обоих процессов: одни используют энергию, освобождаемую при протекании других. Это сопряжение, лежащее в основе всего метаболизма и жизнедеятельности клетки, совершается при посредстве системы АТФ-АДФ, создающей промежуточные, обогащенные энергией соединения.
Например, синтез сахарозы из глюкозы и фруктозы происходит за счёт энергии, освобождающейся при реакции гидролиза АТФ, путём образования промежуточного активированного соединения - глюкозо-1-фосфата: 1) АТФ + глюкоза®АДФ + глюкозо-1-фосфат; 2) глюкозо-1-фосфат + фруктоза® сахароза + фосфат. Суммарная реакция: АТФ + глюкоза+фруктоза®АДФ + сахароза + фосфат. Энергетический баланс процесса: АТФ®АДФ + фосфат - 29,3 кдж/моль (-7000 кал/моль) (уменьшение свободной энергии); глюкоза + фруктоза®сахароза + 23 кдж/моль (+5500 кал/моль) (увеличение свободной энергии). Потеря энергии на тепло 6,3 кдж/моль (1500 кал/моль), т.е. кпд процесса 79%.
По такому же типу осуществляется сопряжение реакций и при синтезе других сложных соединений (липидов, полисахаридов, белков и нуклеиновых кислот). В этих процессах, кроме АТФ, принимают участие и некоторые аналогичные соединения, в которые, вместо аденина, входят другие азотистые основания (гуанин-, цитозин-, уридин-, тимидинтрифосфаты или креатинфосфаты). При синтезе белков и нуклеиновых кислот от АТФ отщепляется не одна концевая фосфатная группа, а две последние (пирофосфат). Т.о., все процессы накопления (аккумулирования) энергии в организмах должны сводиться к процессам образования АТФ, т.е. фосфорилирования (включения фосфатных групп в АДФ или АМФ).
Информация о работе Энергетическая проблема в современном мире