Исторические этапы развития естествознания

Автор работы: Пользователь скрыл имя, 03 Декабря 2012 в 10:03, реферат

Краткое описание

Цель реферата – рассмотреть все этапы развития естествознания. Поэтому в работе рассматривается история развития естествознания, начиная с его предпосылок и заканчивая эпохой науки.
Рассматриваются главные открытия эпох, исторические периоды развития научного знания, вклад ученых в развитие естественных наук.

Содержание

Введение_________________________________________________________3
1.Этапы развития естествознания_________________________________4
1.1 Древнегреческий период______________________________________4
1.2. Эллинистический период_____________________________________7
1.3. Древнеримский период античной натурфилософии_______________9
1.4. Вклад Арабского мира в развитие естествознания________________10
1.5. Естествознание в средневековой Европе_______________________ 11
1.6. Этап, называемый «научной революцией»______________________12
2. Революции в естествознании_____________________________________14
Заключение______________________________________________________19
Список используемой литературы___________________________________

Прикрепленные файлы: 1 файл

ксе.docx

— 43.94 Кб (Скачать документ)

 

 

1.4. Вклад Арабского мира  в развитие естествознания.

 

В эпоху Средних веков  возросло влияние церкви на все сферы  жизни общества. Европейская наука  переживала кризис вплоть до XII-XIII вв. В это время эстафету движения научной мысли Древнего Мира и античности перехватил Арабский мир, сохранив для человечества выдающиеся труды ученых тех времен. Ф. Шиллер писал, что арабы как губка впитали в себя мудрость античности, а затем передали его Европе, перешедшей из эпохи варварства в эпоху Возрождения.

Ислам, объединив всех арабов, позволил им потом в течение двух-трех поколений создать огромную империю, в которую помимо Аравийского полуострова вошли многие страны Ближнего Востока, Средней Азии, Северной Африки, половина Пиренейского полуострова. Развитие исламской государственности в VIII—XII вв. оказало благотворное влияние на общемировую культуру. К Х в. сформировались наиболее крупные культурные центры Арабского мира: Багдад и Кордова. В этих городах было много общественных библиотек, книжных магазинов, существовала мода и на личные библиотеки.

Арабский мир дал человечеству много выдающихся ученых и организаторов  науки. Так, например, Мухаммед, прозванный аль-Хорезми (первая половина IX в.) был выдающимся астрономом и одним из создателей алгебры; Бируни (973-1048) — выдающийся астроном, историк, географ, минералог; Омар Хайям (1201— 1274) — философ и ученый, более известный как поэт; Улугбек (XV в.) — великий астроном и организатор науки, один из наследников Тимура, а также Джемшид, Али Кушчи и многие другие ученые.

Аль-Хорезми значительно улучшил таблицы движения планет и усовершенствовал астролябию — прибор для определения положения небесных светил. Бируни со всей решительностью утверждал, что Земля имеет шарообразную форму, и значительно уточнил длину ее окружности. Он также допускал вращение Земли вокруг Солнца. Омар Хайям утверждал, что Вселенная существует вечно, а Земля и другие небесные тела движутся в бесконечном пространстве.

1.5. Естествознание в средневековой  Европе.

 

В то же самое время в  Европе читали, главным образом, Библию, предавались рыцарским турнирам, войнам, походам. Была распространена куртуазная литература, посвященная прекрасным дамам и рыцарской любви. Только единицы имели склонность к философии и серьезной литературе времен античности.

Однако естествознание развивалось  и в средневековой Европе, причем его развитие шло по самым разным путям. Особо необходимо упомянуть  поиски алхимиков и влияние университетов, которые были чисто европейским порождением. Огромное число открытий в алхимии было сделано косвенно. Недостижимая цель (философский камень, человеческое бессмертие) требовала конкретных шагов, и, благодаря глубоким знаниям и скрупулезности в исследованиях, алхимики открыли новые законы, вещества, химические элементы.

С XIII в. в Европе начинают появляться университеты. Самыми первыми были университеты в Болонье и Париже. Благодаря университетам возникло сословие ученых и преподавателей христианской религии, которое можно считать фундаментом сословия интеллектуалов.

 

1.6. Этап, называемый «научной  революцией».

 

Периодом «научной революции» иногда называют время между 1543 и 1687 гг.

Первая дата соответствует  публикации Н. Коперником работы «Об обращениях небесных сфер»; вторая — И. Ньютоном «Математические начала натуральной философии».

Все началось с астрономической революции Коперника, Тихо Браге, Кеплера, Галилея, которая разрушила космологию Аристотеля — Птолемея, просуществовавшую около полутора тысяч лет.

Коперник поместил в центр мира не Землю, а Солнце;

Тихо Браге — идейный  противник Коперника — движущей силой, приводящей планеты в движение, считал магнетическую силу Солнца, идею материального круга (сферы) заменил современной идеей орбиты, ввел в практику наблюдение планет во время их движения по небу;

Кеплер, ученик Браге, осуществил наиболее полную обработку результатов  наблюдений своего учителя: вместо круговых орбит ввел эллиптические он количественно описал характер движения планет по этим орбитам;

Галилей показал ошибочность  различения физики земной и физики небесной, доказывая, что Луна имеет  ту же природу, что и Земля, и формируя принцип инерции. Обосновал автономию  научного мышления и две новые отрасли науки: статику и динамику. Он «подвел фундамент» под выдающиеся обобщения Ньютона, которые мы рассмотрим далее.

Данный ряд ученых завершает  Ньютон, который в своей теории гравитации объединил физику Галилея и физику Кеплера.

В течение этого периода  изменился не только образ мира. Изменились и представления о человеке, о науке, об ученом, о научном поиске и научных институтах, об отношениях между наукой и обществом, между наукой и философией, между научным знанием и религиозной верой. Выделим во всем этом следующие основные моменты.

1. Земля, по Копернику,  — не центр Вселенной, созданной  Богом, а небесное тело, как  и другие. Но если Земля —  обычное небесное тело, то не  может ли быть так, что люди  обитают и на других планетах?

2. Наука становится не  привилегией отдельного мага  или просвещенного астролога, не комментарием к мыслям авторитета (Аристотеля), который все сказал. Теперь наука — исследование и раскрытие мира природы, ее основу теперь составляет эксперимент. Появилась необходимость в специальном строгом языке.

3. Наиболее характерная  черта возникшей науки — ее  метод. Он допускает общественный  контроль, и именно поэтому наука  становится социальной.

4. Начиная с Галилея наука намерена исследовать не что, а как, не субстанцию, а функцию.

Научная революция порождает  современного ученого-экспериментатора, сила которого — в эксперименте, становящемся все более и более точным, строгим благодаря новым измерительным приборам. Новое знание опирается на союз теории и практики, который часто получает развитие в кооперации ученых, с одной стороны, и техников и мастеров высшего разряда (инженеров, художников, гидравликов, архитекторов и т.д.) — с другой.

Возникновение нового метода исследования – научного эксперимента оказало огромное влияние на дальнейшее развитие науки.

 

 

2. Революции в естествознании

В истории естествознания процесс накопления знаний сменялся периодами научных революций, когда происходила ломка старых представлений и взамен их возникали новые теории.

Крупные научные революции  связаны с такими достижения человеческой мысли, как:

-учение о гелиоцентрической  системе мира Н. Коперника,

-создание классической  механики И. Ньютоном,

-ряд фундаментальных открытий в биологии, геологии, химии и физике в первой половине XIX столетия, подтвердившие процесс эволюционного развития природы и установившие тесную взаимосвязь многих явлений природы,

-крупные открытия в  начале XX столетия в области микромира, создание квантовой механики и теории относительности.

Рассмотрим эти основные достижения.

 Польский астроном  Н. Коперник в труде «Об обращении небесных сфер» предложил гелиоцентрическую картину мира вместо прежней птолемеевой (геоцентрической). Она явилась продолжением космологических идей Аристотеля, и на нее опиралась религиозная картина мира. Заслуга Н. Коперника состояла также в том, что он устранил вопрос о «перводвигателе» движения во Вселенной, так как, согласно его учению, движение является естественным свойством всех небесных и земных тел. Вполне понятно, что его учение не соответствовало мировоззрению католической церкви, и с этого времени начинается противостояние науки и церкви по главным вопросам, касающимся природы.

«Трудно переоценить значение и влияние гелиоцентрической  картины мира на все естественные науки. Это было поистине яркое событие в истории естествознания: вместо прежнего неверного каркаса мироздания была введена истинная система координат околоземного космоса».

 Сравнимые по масштабу перемены в теоретической физике произошли в XVII в. Был осуществлен переход от аристотелевой физики к ньютоновой, которая господствовала в западной науке в течение трех столетий. Используя эту модель, физика достигла прогресса и выгодно отличалась от других дисциплин. Ее законы приобрели математическую формулировку, она доказала свою эффективность при решении многих проблем. С тех пор западная наука добилась крупных успехов и стала мощной силой, преобразующей мир. К тому же она определенным образом формировала мировоззрение ученых. Вступала в силу механистическая картина мира.

Говоря о создании механики Ньютоном, нельзя не упомянуть имя  Галилео Галилея, который стоял у ее истоков. Его принцип инерции был крупнейшим достижением человеческой мысли: предложив его миру, он решил фундаментальную проблему — проблему движения. Уже одного этого открытия было бы достаточно для того, чтобы Галилей стал выдающимся ученым Нового времени.

Однако его научные  результаты разнообразны и глубоки. Он исследовал свободное падение  тел и установил, что скорость свободного падения тел не зависит от их массы (в отличие от Аристотеля) и траектория брошенного тела представляет собой параболу. Известны его астрономические наблюдения Солнца, Луны, Юпитера. В работе «Диалог о двух системах мира — Птолемеевой и Коперниковой» он доказал правильность гелиоцентрической картины мира, утверждению которой способствовали передовые ученые того времени.

 Первый закон механики Ньютона — это принцип инерции, сформулированный Галилеем. Во втором законе механики Ньютон утверждает, что ускорение, приобретаемое телом, прямо пропорционально приложенной силе и обратно пропорционально массе этого тела. И третий закон механики Ньютона есть закон действия и противодействия: действия двух тел друг на друга всегда равны по величине и противоположны по направлению. И еще один закон, предложенный Ньютоном, закон всемирного тяготения, звучит так: все тела взаимно притягиваются прямо пропорционально их массам и обратно пропорционально квадрату расстояния между ними. Это — универсальный закон природы, на основе которого была построена теория Солнечной системы.

«Механика Ньютона поражает своей простотой. Она имеет дело с материальными точками и  расстояниями между ними и, таким  образом, является идеализацией реального  физического мира. Но благодаря этой простоте стало возможным построение замкнутой механической картины  мира. Его теория использовала строгий  математический аппарат и опиралась на научный эксперимент. Именно такая тенденция наметилась в физике после его работ».

Благодаря трудам Галилея  и Ньютона XVIII век считается началом того длительного периода времени, когда господствовало механистическое мировоззрение.

Развитие биологии в XVIII веке также не обходилось без революционных открытий в то время шло своим путем:

Г. Мендель (1822-1884) открыл законы наследственности, скрещивая семена гороха в течение восьми лет.

Исследуя бактерии, Л. Пастер показал, что они присутствуют в  атмосфере, распространяются капельным  путем и их можно разрушить  высокой температурой. В XIX в. микробиология помогала побеждать инфекционные болезни.

Итогом развития эволюционной концепции стала работа Ч. Дарвина (1809— 1882) «Происхождение видов путем естественного отбора» (1859). Эта теория имела такое же влияние на умы людей, какое в свое время имела теория Коперника. Это была научная революция в области биологии. Можно сказать, что коперниковская революция указала место человека в пространстве, а теория Дарвина определила место человека во временной шкале мира.

Следующая научная революция, после которой резко изменилась система взглядов и подходов, также связана с физикой. Это произошло в конце XIX — начале XX столетия. Толчком к построению новой физической картины мира послужил ряд новых экспериментальных фактов, которые не могли быть описаны в рамках старых теорий, как это обычно бывает в науке. К таким фактам относятся прежде всего:

1)исследования Фарадея  по электрическим явлениям,

2)работы Максвелла и  Герца по электродинамике,

3)изучение явления радиоактивности Беккерелем,

4)открытие первой элементарной  частицы (электрона) Томсоном и т.д.

Проникая в область  микромира, физики столкнулись с  неожиданными проявлениями физической реальности, для описания которой возникла потребность в новой теории, ибо сделать это с помощью классической механики не удавалось. Поэтапно, благодаря работам ряда физиков и главным образом Бора, Гейзенберга, Шредингера, Планка, де Бройля и других, была построена физическая теория микромира, создана квантовая механика. Согласно этой теории, движение микрочастиц в пространстве и времени не имеет ничего общего с механическим движением макрообъектов и подчиняется соотношению неопределенностей: если известно положение микрочастицы в пространстве, то остается неизвестным ее импульс и наоборот.

В 1905 г. А. Эйнштейн создал специальную теорию относительности, в которой свойства пространства и времени связаны с материей и вне материи теряют смысл. Эта теория дает преобразование пространственных и временных координат тел, которые двигаются со скоростями, сравнимыми со скоростью света. Вторая часть теории, которая называется общей теорией относительности, связывает присутствие больших гравитационных полей (или массы) с искривлением пространства. Эта часть теории используется в космологических моделях.

 

ЗАКЛЮЧЕНИЕ

Итак, историческое развитие человечества постоянно сопровождалось развитием науки.

Ученые, внесшие свой вклад  в развитие науки, были яркими личностями - они сочетали в себе профессиональные качества в своей области с высокой культурой духа. Новые теории строились на основе не только строгого разума, но и высокой степени интуиции.

С тех пор прошло уже  много времени.  Современная наука  быстро прогрессирует и научные открытия совершаются на наших глазах.  Современное естествознание представляет собой сложную, разветвленную систему множества наук. Ведущими науками XX в. по праву можно считать физику, биологию, науки о космосе, прикладную математику (неразрывно связанную с вычислительной техникой и компьютеризацией), кибернетику, синергетику.

Но не только последние  научные данные можно считать  современными, а все те, которые  входят в толщу современной науки, образуя ее краеугольные камни, поскольку  наука не состоит из отдельных, мало связанных между собой теорий, а представляет собой во многом единое целое, состоящее из разновременных по своему происхождению частей.  

Информация о работе Исторические этапы развития естествознания