Автор работы: Пользователь скрыл имя, 07 Ноября 2013 в 20:38, реферат
Первая теория образования Солнечной системы, предложенная в 1644 г. Декартом, имеет заметное сходство с теорией, признанной в настоящее время. По представлениям Декарта, Солнечная система образовалась из первичной туманности, имевшей форму диска и состоявшей из газа и пыли (монистическая теория). В 1745 г. Бюффон предложил дуалистическую теорию; согласно его версии, вещество, из которого образованы планеты, было отторгнуто от Солнца какой-то слишком близко проходившей большой кометой или другой звездой. Если бы Бюффон оказался прав, то появление такой планеты, как наша, было бы событием чрезвычайно редким, связанным с другим столь же редким событием, как сближение двух звезд, а вероятность найти жизнь где-нибудь во Вселенной стала бы ничтожно малой. Такая перспектива вызвала бы разочарование не только у читателей научной фантастики.
1.Гипотезы об образовании
1.1 История развития гипотез о происхождение Солнечной системы.
Первая
теория образования Солнечной
системы, предложенная в 1644 г.
Декартом, имеет заметное сходство
с теорией, признанной в
Наиболее
известными монистическими
Уже в середине XIX столетия стало ясно, что эта гипотеза сталкивается с фундаментальной трудностью. Дело в том, что наша планетная система, состоящая из девяти планет весьма разных размеров и массы, обладает одной замечательной особенностью. Речь идет о необычном распределении момента количества движения Солнечной системы между центральным телом - Солнцем и планетами. Момент количества движения есть одна из важнейших характеристик всякой изолированной от внешнего мира механической системы. Именно как такую систему мы можем рассматривать Солнце и окружающую его семью планет. Момент количества движения может быть определен как "запас вращения" системы. Это вращение складывается из орбитального движения планет и вращения вокруг своих осей Солнца и планет.Момент количества движения вращающегося Солнца равен всего лишь б-1048. Все планеты земной группы - Меркурий, Венера, Земля и Марс - имеют суммарный момент в 380 раз меньший, чем Юпитер. Львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна.
С точки
зрения гипотезы Лапласа, это
совершенно непонятно. В самом
деле, в эпоху, когда от первоначальн
Для гипотезы
Лапласа эта трудность
Эта гипотеза,
владевшая умами астрономов в
течение трех десятилетий,
Несостоятельность этой гипотезы следует также и из других соображений. Прежде всего, она страдает тем же фатальным недостатком, что и гипотеза Канта - Лапласа: гипотеза Джинса не в состоянии объяснить, почему подавляющая часть момента количества движения Солнечной системы сосредоточена в орбитальном движении планет. Математические расчеты, выполненные в свое время Н. Н. Парийским, показали, что при всех случаях в рамках гипотезы Джинса образуются планеты с очень маленькими орбитами. Еще раньше на эту классическую космогоническую трудность применительно к гипотезе Джинса указал американец Рессел.
Наконец,
ниоткуда не следует, что
Гипотеза Джинса в модификации Вулфсона, по существу, связывает образование планет с образованием звезд. Последние образуются из межзвездной газово-пылевой среды группами в так называемых "звездных ассоциациях". В таких группах, как показывают наблюдения, сперва образуются сравнительно массивные звезды, а потом всякая "звездная мелочь", которая эволюционирует в карлики. Это хорошо согласуется с гипотезой Джинса -Вулфсона. Расчеты показывают, однако, что если, этот механизм был бы единственной причиной образования планетных систем, то их количество в Галактике было бы весьма мало (одна планетная система, примерно, на 100 000 звезд), хотя и не так катастрофически мало, как в первоначальной гипотезе Джинса. По существу, это является единственным уязвимым пунктом современной модификации гипотезы Джинса. Если с достоверностью будет доказано, что около хотя бы некоторых ближайших к нам звезд имеются планетные системы, эта гипотеза будет окончательно похоронена.
В 1944 г. советский ученый О. Ю. Шмидт предложил свою теорию происхождения Солнечной системы. Согласно О. Ю. Шмидту наша планетная система образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти "современный" вид. При этом никаких трудностей с вращательным моментом планет не возникает, так как первоначальный момент вещества облака может быть сколь угодно большим. Начиная с 1961 г. эту гипотезу развивал английский космогонист Литтлтон, который внес в нее существенные улучшения. Нетрудно видеть, что блок-схема "аккреционной" гипотезы Шмидта - Литтлтона совпадает с блок-схемой "гипотезы захвата" Джинса-Вулфсона. В обоих случаях "почти современное" Солнце сталкивается с более или менее "рыхлым" космическим объектом, захватывая части его вещества. Следует, впрочем, заметить, что для того, чтобы Солнце захватило достаточно много вещества, его скорость по отношению к туманности должна быть очень маленькой, порядка ста метров в секунду. Если учесть, что скорость внутренних движений элементов облака должна быть не меньше, то, по существу, речь идет о "застрявшем" в облаке Солнце, которое, скорее всего, должно иметь общее с облаком происхождение. Тем самым образование планет связывается с процессом звездообразования. Согласно иной группе гипотез, планеты и Солнце образовались из единой "солнечной" туманности. По существу, они представляют дальнейшее развитие гипотезы Канта - Лапласа.
1.2 Современные теории происхождения Солнечной системы
Из гипотез происхождения солнечной системы наиболее известна электромагнитная гипотеза шведского астрофизика X. Альвена, усовершенствованная Ф. Хойлом.. Альвен исходил из предположения, что некогда Солнце обладало очень сильным электромагнитным полем. Туманность, окружавшая светило, состояла из нейтральных атомов. Под действием излучений и столкновений атомы ионизировались. Ионы попадали в ловушки из магнитных силовых линий и увлекались вслед за вращающимся светилом. Постепенно Солнце теряло свой вращательный момент, передавая его газовому облаку.Слабость предложенной гипотезы заключалась в том, что атомы наиболее легких элементов должны были ионизироваться ближе к Солнцу, атомы тяжелых элементов - дальше. Значит, ближайшие к Солнцу планеты должны были бы состоять из наилегчайших элементов - водорода и гелия, а более отдаленные - из железа и никеля. Наблюдения говорят об обратном. Чтобы преодолеть эту трудность, английский астроном Ф. Хойл предложил новый вариант гипотезы. Солнце зародилось в недрах туманности. Оно быстро вращалось, и туманность становилась все более плоской, превращаясь в диск. Постепенно диск начинал тоже разгоняться, а Солнце тормозилось. Момент количества Движения переходил к диску. Затем в нем образовались планеты. Если предположить, что первоначальная туманность уже обладала) магнитным полем, то вполне могло произойти перераспределение углового момента . Трудностями и противоречиями гипотезы Хойла являются следующие: во-первых, нелегко представить, как могли "отсортироваться" избыточный водород и гелий в первоначальном газовом диске, из которого образовались планеты, поскольку химический состав планет явно отличен от химического состава Солнца; во-вторых, не совсем ясно, каким образом легкие газы покинули Солнечную систему (процесс испарения, предлагаемый Хойлом, сталкивается со значительными трудностями); в-третьих, главной трудностью гипотезы Хойла является требование слишком сильного магнитного поля у "протосолнца", резко противоречащее современным астрофизическим представлениям.
Более многочисленные и надежные экспериментальные данные о Солнечной системе были получены в послевоенные годы. Методы, которыми были исследованы метеориты и поверхность Луны, нельзя было бы даже представить во времена Лапласа.Речь идет о веществе, которое образовалось на самой ранней стадии жизни Солнечной системы или даже было частью первичной туманности.Исследования послевоенных лет привели к некоторому прояснению нашего происхождения. Как уже считается доказанным, Вселенная родилась примерно 15-20 млрд. лет назад в результате "большого взрыва". Спустя миллиард лет из смеси водорода и гелия, заполнявших все пространство, началось образование галактик. Первые звезды, образовавшиеся в те времена, все еще видны в шаровых скоплениях и в центрах галактик. Вслед за ними образовались спиральные рукава.
Наиболее массивные звезды, сформировавшиеся в самом начале, прошли очень быструю эволюцию, при которой водород превращался в более тяжелые элементы (в том числе углерод и кислород), а вновь образованное
вещество выбрасывалось в окружающее пространство. Такие превращения и сейчас происходят в термоядерных реакциях, поставляющих всю энергию, излучаемую звездами.Этот "пепел" в свою очередь подвергался локальному сжатию, приводящему к рождению новых звезд, и цикл повторялся. Как полагают ученые, наше Солнце образовалось одновременно с другими звездами. Оно представляет собой звезду второго или третьего поколения.
Существуют две принципиальные точки зрения на происхождения звезд и, в частности, Солнца.Первая гипотеза основывается на предположении, что звезды формируются из газовой материи - той самой, которая и в настоящее время наблюдается в Галактике (см.: [4]).Предполагается, что газовая материя в тех местах, где ее масса и плотность достигают некоторой величины, начинает под действием своего собственного притяжения сжиматься и уплотняться, образуя сначала холодный газовый шар. В результате продолжающегося сжатия температура газового шара начнет подниматься. Потенциальная энергия частиц в поле притяжения газового шара при приближении к центру становится меньше, а это означает, что часть потенциальной энергии переходит в тепловую энергию. Совершенно тот же переход энергии происходит, когда лежавший на краю пропасти камень, упав на ее дно, теряет часть потенциальной энергии в силовом поле земного притяжения, и приобретает тепловую энергию, разогревшись от удара о дно пропасти.Когда газовый шар нагреется, он станет отдавать тепловую энергию через излучение с поверхностных слоев, которые вследствие этого будут охлаждаться и посредством теплопроводности вызывать охлаждение более глубоких слоев. Поэтому если бы в газовом шаре, теперь уже звезде, не появились новые источники энергии, то процесс сжатия, сопровождающийся излучением энергии, довольно быстро привел бы к исчерпанию энергии и угасанию звезды. Эволюция таких звезд, формирующихся из водорода, была бы очень простой. Однако процесс сжатия приводит к тому, что центральные области звезды разогреваются до очень высоких температур. Они расположены очень глубоко и почти не испытывают влияния охлаждения, вызываемого излучением с поверхностных слоев. Когда температура центральной области достигает нескольких миллионов градусов, в ней начинаются термоядерные реакции, сопровождающиеся выделением большого количества энергии. Период, в течение которого звезда, сжимаясь из газового облака, достигнет состояния, когда в ее центральных областях начнут действовать термоядерные реакции, называется периодом сжатия. После возникновения термоядерных реакций сжатие звезды прекращается. Некоторое время звезда будет сохранять неизменными свои основные физические характеристики. При этом главными из термоядерных реакций являются реакции, которые приводят к превращению водорода в гелий. Как показывают расчеты, исчерпание водорода должно сопровождаться увеличением радиуса звезды и уменьшением ее температуры.После того, как в звезде выгорит весь водород, и она достигнет стадии красного гиганта, сжатие ядра, состоящего теперь уже из гелия, приведет к дальнейшему повышению температуры до значений более 100 млн. градусов. Тогда начнет действовать новая термоядерная реакция - образование атома углерода из трех ядер атома гелия. Эта реакция сопровождается потерей массы и выделением энергии излучения. Температура звезды станет возрастать.
Информация о работе Гипотезы об образовании Солнечной системы