Автор работы: Пользователь скрыл имя, 26 Августа 2013 в 09:10, реферат
В настоящее время отрасли телекоммуникаций развиваются стремительными темпами. С модернизацией техники улучшается качество традиционных услуг электрической связи, появляются новые. Среди них важнейшую роль для решения информационных, культурных, пропагандистских и даже военных задач играет телевизионное вещание.
В данной работе речь пойдет об истории появления и развития телевидения, о его основных видах и характеристиках, о современных тенденциях в области телевизионного вещания и о его будущем.
Введение 3
1. Общие сведения о системах связи 4
1.1. Основные понятия и определения в области связи 4
1.2. Обобщенная структурная схема системы связи 5
1.3. Основные характеристики сигналов электросвязи 6
1.4. Общие сведения о сетях связи 8
2. Телевидение. История развития. Телевидение сегодня. 11
2.1. Техническая предпосылка появления телевидения. 11
2.2. Механическое телевидение 13
2.3. Электронное телевидение 15
2.4. Цветное телевидение 17
2.5. Вещательные системы цветного телевидения 19
2.5.1. NTSC 19
2.5.2. SECAM 20
2.5.3. PAL 21
2.6. История спутникового телевизионного вещания 23
2.6.1. Распределительная телевизионная сеть 25
2.6.2. Российские операторы спутникового телевидения 27
2.7. Кабельное телевидение: экскурс в историю 27
2.8. Цифровое телевидение 29
2.9. Телевидение высокой четкости 31
2.10. Объемное телевидение 32
2.11. Интернет-телевидение 35
3. Телевидение будущего 40
3.1. Объединение интернета и телевидения – связь 4G 41
3.2. Виртуальная реальность. Мобильный кинотеатр. 42
3.3. Изображение обретает запахи 42
3.4. 3D-эпоха. Плоская картинка в прошлом. 43
3.5. Телевизор в виде контактной линзы 44
Заключение 45
Список используемой литературы 46
В качестве основных параметров сигнала в системах связи используют длительность сигнала, его динамический диапазон и ширину спектра. Под длительностью сигнала Тc< понимают интервал времени, в пределах которого сигнал существует. Динамический диапазон сигнала DC определяется отношением наибольшей мгновенной мощности сигнала к наименьшей мощности принимаемого сигнала при заданном качестве передачи (обычно выражается в децибелах). Ширина спектра сигнала FC определяет диапазон частот, в котором сосредоточена основная доля энергии сигнала, которая дает представление о скорости изменения сигнала внутри интервала его существования. Сигналы конечной длительности содержат спектральные составляющие на неограниченной полосе частот.
1.4 Общие сведения о сетях связи
Сети связи - совокупность технических средств, обеспечивающих передачу и распределения сообщений. В зависимости от того, имеются или отсутствуют в сети специальные устройства коммутации, различают коммутируемые и некоммутируемые сети. Правила построения сетей зависят от способа распределения и вида передаваемых сообщений.
Среди некоммутируемых сетей наиболее часто встречаются следующие способы организации сетей: «общая шина» (рисунок 3,а), «кольцо» (рисунок 3,б), полносвязная сеть («каждый с каждым») (рисунок 3,в). Подобные конфигурации наиболее характерны для компьютерных сетей.
Каждый из способов организации сетей имеет свои достоинства и недостатки. Так, в структурах общая шина и кольцо все участники сети используют общую среду распространения сигналов и имеют уникальные признаки, характерные только данному абоненту и называемому адресом. Этот адрес обязательно имеется в передаваемом сообщении, и по этому адресу принимающая сторона судит о том, ей или другому участнику сети предназначено это сообщение.
Рис. 3. Некоммутируемые сети:
а) общая шина;
б) кольцо; в) полносвязная сеть
Достоинством таких сетей является простота организации. Недостатки подобных структур заключаются в следующем. При обрыве линии связи в любом месте связь становится невозможной для целой группы пользователей. Кроме того, в таких сетях в любой момент времени может передавать сообщение только одна пара участников сети.
Организация сети по принципу «каждый с каждым» требует значительно большего количества соединительных линий. Но зато сеть отличается наилучшей оперативностью: в любой момент времени может быть установлена связь любой пары абонентов. В целом, такая сеть является более надежной: выход из строя одной линии вызовет нарушение связи только одной пары абонентов. Остальные участники сети будут продолжать работать в прежних условиях.
По указанным причинам перечисленные выше структуры организации сетей наиболее эффективно работают лишь при небольшом числе абонентов. С увеличением количества абонентов возрастает сложность организации таких сетей, либо уменьшается время, доступное каждому из абонентов для использования общих ресурсов, либо с ростом числа абонентов стремительно возрастает количество и длина линий, их соединяющих.
При увеличении количества
участников сети наиболее эффективными
оказываются коммутируемые
При введении специального устройства - узла коммутации - может быть уменьшено количество необходимых линий для соединения абонентов и их общая длина. При этом сеть сохраняет высокую оперативность и достаточно высокую надежность, связанную с нарушениями в работе линий связи: при обрыве абонентской линии связи лишь один пользователь получает отказ в услугах связи. Но в таких структурах высокая ответственность ложится на узлы коммутации: нарушения в его работе могут привести к срыву связи всей сети.
Простейшая коммутируемая сеть имеет один узел коммутации. Такую структуру сети называют радиальной, или «звезда» (рисунок 4,а). При увеличении числа пользователей сети более эффективной оказывается радиально-узловая структура (рисунок 4,б).
Рис. 4. Коммутируемые сети:
а) радиальные; б) радиально-узловые
В коммутируемой сети для обеспечения передачи сообщений, предназначенных конкретному пользователю, оконечные аппараты абонентов предварительно связываются с помощью узлов коммутации и соединительных линий. Электрическая цепь (канал), состоящая из нескольких участков, называется соединительным трактом.
Процесс выбора электрических цепей и объединение их в соединительный тракт называется коммутацией каналов. Сеть, обеспечивающая коммутацию каналов, называется сетью с коммутацией каналов. После установления соединения в такой сети информация от источника к получателю поступает в реальном времени с учетом лишь физических задержек распространения сигнала по цепи. Это является достоинством таких сетей. Недостаток данного режима работы сети заключается в следующем. Пока общий ресурс сети (узлы коммутации и соединительные линии) занят одной парой пользователей сети, другие абоненты не могут в этот интервал времени воспользоваться сетью, даже в том случае, если по ней не передается никакой информации.
В сетях связи возможны и другие режимы работы. Передачу документальных сообщений можно выполнять не только после установления всего соединительного тракта («из конца в конец»), а поэтапно, от одного узла коммутации к другому. В каждом последующем узле принятое сообщение становится в очередь и отправляется к очередному узлу по мере освобождения линии. Такая организация доставки информации называется коммутацией сообщений, а сеть, обеспечивающая коммутацию сообщений, называется сетью с коммутацией сообщений. «Простои» соединительных линий в такой сети оказываются менее продолжительными, и в целом такая сеть может передать больший объем информации.
Вариантом сети с коммутацией сообщений является сеть с коммутацией пакетов. В такой сети отправляемые сообщения разбиваются на блоки (пакеты) фиксированного размера. По сети каждый такой пакет передается как самостоятельное сообщение. В месте приема исходное сообщение восстанавливается из набора полученных пакетов. Эффективность такого режима работы сети оказывается еще выше. На практике наиболее часто используют методы с коммутацией каналов и коммутацией пакетов.
По иерархическим признакам (масштабу охвата территории и количеству участников) сети разделяются на глобальные (всемирные) и региональные (национальные, зоновые или местные). Примерами глобальных сетей являются компьютерные сети Internet, сети сотовой связи GSM и т.д. Региональные сети обслуживают территорию соответствующего региона. Компьютерные сети по этому признаку классифицируют на глобальные сети и локальные сети.
По функциональным признакам сети связи разделяются на сети передачи (магистральные сети), сети распределения (системы коммутации) и сети управления.
По виду передаваемых сообщений сети разделяются на: телефонные сети, телеграфные сети, радио и телевизионные вещательные сети, сети сотовой связи, сети передачи дискретных сообщений, сети передачи газет и т.д.
Телефонная сеть является одной из наиболее разветвленных сетей и строится по радиально-узловому принципу. Оконечными устройствами телефонной сети являются телефонные аппараты и факс-модемы.
Телеграфная сеть также строится по радиально-узловому принципу с учетом административного деления страны. Оконечными устройствами телеграфной сети являются телеграфные аппараты отделений связи либо других пользователей.
Сети сотовой связи также строятся по радиально-узловому принципу с учетом особенностей распространения радиоволн.
Сети передачи дискретных сообщений имеют схожую структуру и являются одним из наиболее динамично развивающихся участников процесса передачи информации.
Сети передачи газет обеспечивают передачу газетной информации факсимильным способом.
Важнейшими сетями передачи массовых сообщений являются сети вещания. Вещание - это процесс одновременной передачи сообщений общего характера широкому кругу абонентов при помощи технических средств связи.
Вещательная программа представляет собой последовательную во времени передачу различных сообщений. Технология вещания включает в себя как подготовку вещательных программ, так и доведение этих программ до абонентов. Основными требованиями к сетям вещания являются высокое качество передаваемых программ, надежность и экономичность при охвате вещанием всего населения страны.
Сети радиовещания и телевизионного вещания строятся по радиально-узловому принципу. Распространение программ в сетях радио- и телевизионного вещания осуществляется по каналам связи, разветвление выполняется на специальных узлах. По способу доведения вещательных программ до абонентов различают радиовещание (в том числе и эфирное телевидение) с использованием передающих радио и телевизионных станций и проводное вещание (в том числе и кабельное телевидение).
2. Телевидение. История развития. Телевидение сегодня.
Телевидение является одним из самых молодых средств массовой информации (моложе только Интернет). Под коммуникацией понимается передача информации от человека к человеку. Первым видом коммуникативной деятельности была система сигналов, как у животных, далее — знаков, а еще позднее возникла речь, необходимая для координации совместных действий человека. Дальнейшее развитие коммуникации привело людей к изобретению письменности и книгопечатания, появились газеты. Но для оперативной передачи информации этих средств было явно недостаточно. Световые сигналы, используемые в древности, имели небольшую дальность распространения, так как свет не может проходить через естественные препятствия и даже в пределах прямой видимости ему может помешать, например, обычный туман.
Открытие радиоволн
сделало проникновение информац
Научное познание включает в себя два уровня, или два этапа. Эмпирический уровень (от греч. «эмпей-рия» — опыт) — это накопление разнообразных фактов, наблюдаемых в природе. Теоретический уровень (от греч. «теория» —мысленное созерцание, умозрение) представляет собой объяснение накопленных фактов.
Для осуществления передачи и приема телевизионного сигнала необходимо:
а) преобразовать свет в электрические сигналы, б) передать эти сигналы по какому-либо каналу связи, в) осуществить обратное преобразование электрических сигналов в свет.
Начало формирования
научных основ для изобретения
ТВ было положено еще в Средние
века, когда неизвестному изобретателю
камеры-обскуры удалось
Для обратного преобразования (электричество — свет) использовались газоразрядные источники света — приборы, в которых электрическая энергия при прохождении электрического тока через газ преобразовывалась в оптический сигнал. Впервые такую безынерционную трубку в Германии в 1855 г. получил Иоганн Генрих Гейслер (1815-1879). К 1873 г. англичанин У. Смит (1769-1839) открыл внутренний фотоэффект, или фотопроводимость, в селене, когда под воздействием света (фотоны «вырывают» электроны из валентной среды) возрастало число электронов проводимости. Теоретический этап основ телевидения был завершен. Начался период практического осуществления изобретений с их постоянным совершенствованием.
Глаз способен различать мелкие детали рассматриваемого изображения в соответствии со своей разрешающей способностью. Изображение, проецируемое на сетчатку глаза, тоже состоит из минимально различимых элементов. Каждый из этих элементов характеризуется а) яркостью, б) цветностью и в) геометрической точкой.
Пожалуй, первую идею реализации телевидения выдвинул в 1875 г. в Бостоне Джордж Кэри. Экран будущего телевизора Кэри представлял в виде мозаичной панели. Каждый элемент мозаики был представлен газоразрядной (безынерционной) трубкой. То есть каждой геометрической точке экрана можно было придать соответствующую яркость. Заметим, что данную схему Кэри предлагал за два десятилетия до великого изобретения братьев Люмьер. Каждый кадр нес в себе стопроцентную информацию, именно поэтому осуществить проект Дж. Кэри было невозможно, так как каждый мозаичный сегмент передающей системы должен быть связан с аналогичным сегментом экрана.
Информация о работе Телевидение. История развития. Телевидение будущего