Автор работы: Пользователь скрыл имя, 11 Мая 2013 в 20:06, курсовая работа
Разработка системы эксплуатационного управления спутниковых каналов связи для ООО "Казахтелеком" на базе платформы LabVIEW. Изложены основы построения систем передачи с частотным и временным разделением каналов. Особое внимание уделено построению цифровых систем передачи с временным разделением каналов на основе импульсно-кодовой модуляции. Раскрыты принципы иерархического построения систем передачи. Рассмотрены вопросы построения цифровых волоконно-оптических систем передачи и систем радиосвязи: радиорелейных и спутниковых систем передачи, систем подвижной радиосвязи. Освещены основы построения телекоммуникационных сетей различного назначения и принципы их взаимодействия.
Введение
1. ПОСТРОЕНИЕ РАДИОРЕЛЕЙНЫХ И СПУТНИКОВЫХ ЛИНИЙ ПЕРЕДАЧИ
1.1 Основные понятия и определения. Принципы многоствольной передачи
1.2 Виды модуляции, применяемые в радиорелейных и спутниковых системах передачи
2. СПУТНИКОВЫЕ И КОМБИНИРОВАННЫЕ СЕТИ
2.1 Геостационарные спутники
2.2 Низкоорбитальные спутники
2.3 Спутники против оптоволоконных кабелей
Выводы
3. ПРИМЕНЕНИЕ ПРОГРАММНО-АППАРАТНОГО КОМПЛЕКСА LABVIEW
3.1 Программно-аппаратный комплекса LabVIEW
3.2 Применение LabView для тестирования сигнализации сети абонентского доступа
Выводы
3.3. Подсистема контроля и диагностики спутниковых каналов связи
3.4. Базовая структура ПКД СКС
5. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА
5.1 Общая характеристика опасных и вредных факторов на рабочем месте
5.2 Общие мероприятия по обеспечению безопасности на рабочем месте
5.3 Расчет искусственного освещения в рабочем помещении
Выводы
Заключение
Список литературы
Рисунок 1.3 – Спутниковая линия передачи
Здесь приняты такие обозначения: ЗС – земная станция, т. е. станция спутниковой линии передачи, расположенная на земной, водной поверхностях или в основной части земной атмосферы и предназначенная для космической линии передачи; КС – космическая станция, расположенная на объекте, который находится за пределами основной части земной атмосферы; ИСЗ – искусственный спутник Земли.
Под космической линией передачи понимается радиолиния, в которой используются космические станции, пассивные спутники или иные космические объекты. При использовании одного ИСЗ, расположенного на геостационарной или вытянутой орбите, максимальная дальность радиосвязи СЛП около 15000 км.
Радиорелейные линии прямой видимости, тропосферные радиорелейные линии и спутниковые линии передачи в большинстве своем работают в диапазонах дециметровых и сантиметровых волн (в диапазонах УВЧ и СВЧ). Однако имеются малоканальные радиорелейные системы передачи (РРСП), работающие в диапазоне метровых волн (на ОВЧ). Использование этих диапазонов обусловлено, главным образом, возможностью передачи широкополосных сигналов (телевидения, первичных, вторичных, третичных широкополосных каналов и трактов, первичных, вторичных, третичных, четверичных потоков и потоков синхронной цифровой иерархии).
Совокупная ширина полосы частот дециметрового и сантиметрового диапазонов в сотни раз превышает ширину полосы частот всех более длинноволновых диапазонов, вместе взятых. Это позволяет организовать совместную работу большого числа широкополосных РРСП, передавать любые виды сообщений, а также строить многоканальные РРСП с высокой пропускной способностью (до нескольких тысяч каналов тональной частоты или основных цифровых каналов с эквивалентной скоростью передачи, соответствующей нескольким сотням мегабит в секунду).
Широкополосность систем
позволяет применять
Кроме того, в диапазонах УВЧ и СВЧ довольно просто создать антенны с узконаправленным излучением и приемом радиоволн. Применение таких антенн, имеющих относительно небольшие габариты, позволяет получить энергетический выигрыш по сравнению с ненаправленным излучением (приемом) примерно 30 ... 50 дБ. Это недостижимо для антенн более длинноволновых диапазонов и дает возможность упростить приемо-передающую аппаратуру (уменьшить необходимые мощности передатчиков и чувствительность приемников), а также облегчить электромагнитную совместимость различных систем радиосвязи. Наконец, в этих диапазонах мало влияние промышленных и атмосферных помех.
Для повышения пропускной способности, надежности и экономичности при построении РРСП и спутниковых систем передачи (ССП) широко используется принцип многоствольной передачи. При этом на каждой станции устанавливается несколько комплектов оборудования ствола – линейного тракта.
На рис. 1.4 приведена структурная схема четырехствольной радиолинии связи, содержащей три радиосистемы передачи (РСП): аналоговую телефонную, цифровую, аналоговую телевизионную и отдельный резервный ствол. На рис. 1.4 приняты следующие обозначения: АКГпер(пр) – аналоговое каналообразующее оборудование и оборудование формирования типовых групп каналов (обычно оборудование систем передачи с частотным разделением) тракта передачи (приема); ЦКГпер(пр) – цифровое каналообразующее оборудование и оборудование формирования типовых цифровых потоков (обычно оборудование цифровых систем передачи на основе импульсно-кодовой модуляции с временным разделением каналов) трактов передачи (приема); СЛпер(пр) – соединительные линии; ОТФпер(пр), ОЦпер(пр) и ОТВпер(пр) – оконечное оборудование телефонного, цифрового и телевизионного стволов передачи (приема) соответственно; каналы ТЧ, ТВ, ЗС, ЗВ – каналы тональной частоты, телевидения, сигналов звукового сопровождения телевидения и сигналов звукового вещания; R (R'), Т (Т') – точки подключения к соединительным линиям различного оборудования.
Совокупность нескольких однотипных или разнотипных РСП и отдельных стволов, имеющих общие тракты распространения радиоволн, оконечные и ретрансляционные станции, а также устройства их обслуживания, образуют многоствольную радиолинию связи (РЛС), а совокупность стволов, входящих в состав радиолинии связи, образует многоствольную радиолинию передачи (РЛП).
Рисунок 1.4 – Структурная схема четырехствольной радиолинии связи
В многоствольных РЛП с резервированием каждый из стволов включает в себя радиоствол, оконечное оборудование и аппаратуру резервирования, обеспечивающую переключение на резервный ствол при выходе из строя основного радиоствола. В некоторых РЛП предусмотрен отдельный ствол служебной связи, содержащий упрощенное оборудование. Использование общих антенн, фидерных трактов, источников электроснабжения, систем служебной связи и телеобслуживания, сооружений для размещения оборудования значительно повышает экономичность многоствольных РЛП.
Совместная работа нескольких
стволов в одной РЛП
Для этого в многоствольных РЛП применяется группирование частот передачи и приема, в соответствии с которым частоты передачи всех стволов размещаются в одной половине отведенной полосы частот, а частоты приема – в другой. В стволах РЛП могут использоваться двух- и четырехчастотные планы. На рис. 1.5, а и б изображены двухчастотный и четырехчастотный планы для трехствольной РЛП соответственно (см. рис. 1.4). Двухчастотные планы обычно применяются на радиорелейных линиях (РРЛ) и спутниковых линиях передачи (СЛП), работающих в сантиметровом диапазоне. На РРЛ дециметрового диапазона, мобильных РРЛ, а также на тропосферных радиорелейных линиях (ТРРЛ) применяются четырехчастотные планы. При этом ТРЛЛ содержит не более двух стволов. Для сигналов разных стволов используются различные несущие частоты.
Все системы многоствольной РРЛ организуются таким образом, чтобы все стволы работали независимо один от другого, были бы взаимозаменяемы.
Рисунок 1.5 – Двух- и четырехчастотные планы для трехствольной РЛП
К уже рассмотренной классификации РРЛ добавим их классификацию еще по ряду наиболее важных признаков и характеристик.
1. По назначению различают: междугородные магистральные, внутризоновые и местные РРЛ. Магистральные РРЛ обычно являются многоствольными.
2. По диапазону рабочих (несущих) частот РРЛ подразделяются на линии дециметрового и сантиметрового диапазонов. В этих диапазонах в соответствии с Регламентом радиосвязи для организации РРЛ выделены полосы частот, расположенные в области 2, 4, 6, 8, 11 и 13 ГГц. В настоящее время осваивается область частот 18 ГГц и выше. Однако использование столь высоких частот затруднено из-за сильного ослабления энергии радиоволн во время атмосферных осадков.
3. По способу разделения каналов и виду модуляции несущей можно выделить:
а) РРЛ с частотным разделением каналов (ЧРК) и частотной модуляцией (ЧМ) гармонической несущей;
б) РРЛ с временным разделением каналов (ВРК) и аналоговой модуляцией периодической последовательности импульсов, которые затем модулируют несущую ствола;
в) цифровые РРЛ на основе импульсно-кодовой или дельта-модуляций и их разновидностей, цифровые сигналы которых затем модулируют несущую ствола.
4. По принятой в настоящее время классификации РРЛ разделяют на системы большой, средней и малой емкости.
К РРЛ большой емкости принято относить системы, позволяющие организовать в одном стволе 600 и более каналов тональной частоты (КТЧ), что соответствует пропускной способности более 100 Мбит/с. Стационарные РРЛ большой емкости используются для организации магистральных связей. Если РРЛ позволяет организовать 60 ... 600 КТЧ, то такие системы относятся к РРЛ средней емкости, а если менее 60 КТЧ – РРЛ малой емкости. Пропускная способность РЛ средней и малой емкости равна соответственно 10 ... 100 Мбит/с и менее 10 Мбит/с.
Стационарные РРЛ средней
РРЛ малой емкости применяются на местных сетях связи и, кроме того, широко используются для организации технологических линий передачи на железнодорожном транспорте, в системе энергоснабжения, в газо- и нефтепроводах и др.
В настоящее время на телекоммуникационных
сетях все большее
Технико-экономические
В системах передачи сигналов телевидения полный телевизионный сигнал формируется с помощью оборудования телевизионного ствола на оконечных радиорелейных или земных спутниковых станциях и затем модулирует высокочастотную несущую.
Высокочастотная несущая или высокочастотный
радиосигнал формируется в
Основными показателями, характеризующими виды модуляции в РРСП и ССП (далее радиосистемы передачи - РСП), являются помехоустойчивость в отношении тепловых шумов, эффективность использования занимаемой полосы частот, степень подверженности передаваемых сигналов влиянию неидеальности характеристик ствола - линейного тракта, сложность построения приемопередающей аппаратуры и соответствующих модуляторов и демодуляторов (модемов).
Частотная модуляция в аналоговых РСП.
В аналоговых СП с ЧРК и телевидения в основном применяется частотная модуляция (ЧМ). При ЧМ основной причиной нелинейных искажений сигналов в радиоканале, приводящих к взаимным влияниям между каналами в СП с ЧРК, является нелинейность ФЧХ, в то время как при обычной AM и AM с передачей одной боковой полосы (АМ-ОБП) частот основной причиной нелинейных искажений является нелинейность АХ. Так как компенсация нелинейности ФЧХ выполняется более простыми методами, чем компенсация нелинейности АХ, то приемопередающая аппаратура при использовании ЧМ в РСП оказывается более простой, чем при AM и АМ-ОБП. Кроме того, ЧМ обладает большей помехоустойчивостью в отношении теплового шума и внешних помех по сравнению с AM и АМ-ОБП, если индекс ЧМ не слишком мал (в малоканальных РСП с числом каналов ТЧ не более 120).
При ЧМ мгновенная частота модулированного радиосигнала изменяется в соответствии с модулирующим сигналом :
,
где - частота несущей; - отклонение частоты под воздействием модулирующего сигнала (девиация частоты): - крутизна модуляционной характеристики частотного модулятора, Гц/В.
Общее выражение для ЧМ радиосигнала имеет вид
,
где - постоянная амплитуда радиосигнала.
Основными характеристиками ЧМ радиосигнала являются: девиация частоты, индекс частотной модуляции и ширина спектра, необходимая для неискаженной передачи. Поскольку основной загрузкой радиостволов являются групповые телефонные сигналы СП с ЧРК, то и рассмотрим характеристики ЧМ радиосигнала для этого вида загрузки.
Эффективная девиация частоты соответствует средней мощности группового сигнала и эффективной девиации частоты на канал (соответствующей измерительному уровню сигнала в одном канале ТЧ) и определяется по формуле
где N - число каналов соответствующей СП с ЧРК. Величина обычно нормируется и в зависимости от N может изменяться в пределах 35 ... 200 кГц.
Эффективное значение индекса ЧМ определяется отношением эффективной девиации частоты к верхней частоте спектра группового телефонного сигнала, т. е,
.
Для характеристики ЧМ радиосигнала используются также понятия квазипиковых девиации частоты и индекса модуляции, соответствующие квазипиковой мощности группового сигнала, превышаемой с вероятностью не более и соответственно равным: