Автор работы: Пользователь скрыл имя, 07 Мая 2014 в 21:09, реферат
В современной науке под исследованиями, связанными с моделированием интеллектуальных возможностей человека, понимают научное направление, занятое проблемами синтеза автоматических структур, способных решать сложные задачи информационного обеспечения различных видов человеческой деятельности. Обычно – это задачи, для которых по тем или иным причинам не существует готовых правил или примеров решения. Разработать правила решения такой задачи может человек, обладающий необходимыми знаниями, опытом и интеллектом. Но если создать компьютерную модель, в памяти которой будут содержаться знания такого человека, запрограммированы его опыт и интеллектуальные способности, необходимые для решения конкретной задачи, то этой моделью можно будет пользоваться для решения многих задач, подобных уже решенной
Введение. 3
Общие положения ИИС. 5
1.1 Направления развития ИИС и способы их реализации. 5
1.2. Свойства и возможности ИИС. 8
2. Особенности и признаки интеллектуальности информационных систем. 11
3. Модели представления знаний в ИИС, основанных на правилах. 12
Заключение. 14
Список используемой литературы: 15
Универсальность системы («умение» решать любые интеллектуальные задачи того класса, который определяется проблемной областью) обеспечивается наличием в структуре ее базы знаний соответствующей информации. Как уже было отмечено, база знаний системы состоит из декларативных и процедурных знаний. Первая компонента представлена информационной моделью предметной области, к которой относится класс задач, а вторая - набором логических процедур и правил, необходимых и достаточных для решения задач данного проблемного класса. Эти две компоненты, будучи информационно согласованными и совместимыми, должны обеспечивать решение любой типовой задачи данного класса. Если условия какой- либо задачи потребуют знаний или процедур, которых нет в базе системы, то факты (знания) и алгоритмы анализа и синтеза, которые в ней имеются, должны позволить получить их и решить задачу.
Способность системы к обучению и самообучению обеспечивается средствами анализа и обобщения имеющихся знаний и синтеза на этой основе новых знаний. Такие средства могут быть комплексными, то есть программно-аппаратными. Программная компонента ИИС, основанной на правилах, решает задачи анализа и синтеза знаний с помощью логических и вычислительных алгоритмов, реализующих методы правдоподобного вывода, или с применением известных правил решения стереотипных задач. Аппаратно-программная компонента ИИС, основанной на аналогиях (примерах).
На рис.1 представлена обобщенная функциональная структура ИИС в ее принципиальной трактовке. Диалоговые средства (ДС) обеспечивают взаимодействие пользователей с системой и организуют работу других блоков. Функции ДС обеспечиваются БЗ, в которой содержится информация о пользователях ИИС, а также средствами лингвистического анализа (ЛА), лингвистического синтеза (ЛС) и средствами семантической интерпретации (СИ).
Обобщённая функциональная структура ИИС.
Рис. 1
Любая информационная система (ИС) выполняет следующие функции:
С точки зрения реализации перечисленных функций ИС можно рассматривать как фабрику, производящую информацию, в которой заказом является информационный запрос, сырьем - исходные данные, продуктом - требуемая информация, а инструментом (оборудованием) - знание, с помощью которого данные преобразуются в информацию.
Интеллектуальная информационная система (ИИС) - это ИС, которая основана на концепции использования базы знаний для генерации алгоритмов решения экономических задач различных классов в зависимости от конкретных информационных потребностей пользователей.
Для интеллектуальных информационных систем, ориентированных на генерацию алгоритмов решения задач, характерны следующие признаки:
Коммуникативные способности ИИС характеризуют способ взаимодействия (интерфейса) конечного пользователя с системой.
Сложные плохо формализуемые задачи - это задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.
В интеллектуальных информационных системах (ИИС) информационная модель ПО представлена совокупность двух разновидностей знаний – декларативные и процедурные. Декларативными принято называть знания о свойствах сущностей ПО и об отношениях между ними, а процедурными - знаний о допустимых правилах манипулирования такой информацией. Декларативные знания утверждают факт наличия определенных свойств сущностей, а процедурные знания определяют правила, методы и процедуры, с помощью которых можно осуществлять разнообразный анализ декларируемых знаний и на его основе синтезировать новые знания. К примеру, применяя к определенной совокупности фактов некую последовательность известных правил, можно выяснить:
Центральным вопросом при создании базы знаний ИИС является выбор модели представления знаний (ПЗ) о свойствах сущностей ПО и отношениях (связях) между ними. Эта модель должна определять не только структуры информации различных уровней, но и обеспечить их максимальную адекватность (соответствие) структуре внутренних операций компьютера и структуре языков программирования, используемых для реализации модели. При этом, безусловно, нельзя оставлять без внимания и такое важное условие как максимальное соответствие модели ПЗ характеру (классу) задач, для решения которых создается система. Многие современные средства (языки) описания абстрактных и конкретных знаний и языки манипулирования такими знаниями ориентированы на создание производящих конструкций (процедур), реализуемых на компьютерах фон-неймановской архитектуры в виде последовательностей элементарных операций арифметики, алгебры исчисления предикатов и логики. Выбор способа построения таких производящих конструкций (процедур) определяет тип модели представления знаний. Представление знаний в такой модели должно быть понятным и однородным (одинаковым для любой категории отображаемых знаний) в конкретной ПО. Однородность представления знаний делает более технологичным управление логическим выводом при анализе и синтезе информации и управление знаниями (приобретение знаний и их оценку). Требование понятности и однородности представления знаний могут в некоторых случаях оказаться противоречивыми. И выход из такой ситуации бывает разным при решении простых или более сложных задач. В простых случаях (относительная однородность объектов ПО и типов связей между ними или относительно узкий класс решаемых задач) приемлемым может оказаться нестрогое («слабое») структурирование знаний. В сложных случаях (разнородность объектов, многообразие связей между ними, широкий класс решаемых задач) необходимо выбрать способ представления знаний, обеспечивающий их строгую («сильную») структуризацию и, если удастся, - модульную организацию модели представление знаний.
В современных ИИС применяются четыре типа моделей представления знаний:
Таким образом, интеллектуальная информационная система - это компьютерная модель интеллектуальных возможностей человека в целенаправленном поиске, анализе и синтезе текущей информации об окружающей действительности для получения о ней новых знаний и решения на этой основе различных жизненно важных задач.
Интеллектуальная информационная система (ИИС) - это ИС, которая основана на концепции использования базы знаний для генерации алгоритмов решения экономических задач различных классов в зависимости от конкретных информационных потребностей пользователей.
Чаще всего интеллектуальные системы применяют для решения задач, основная сложность которых связана с использованием слабо-формализованных знаний специалистов – практиков и где смысловая или логическая обработка информации преобладает над вычислительной. Например, понимание естественного языка, принятия решений в сложной ситуации, управление диспетчерским пультами. Системы, ядром которых является база знаний или модель предметной области, описанная на языке сверхвысокого уровня, приближенном к собственному, называют интеллектуальными. Такой язык сверхвысокого уровня называют языком представления знаний.
Перспективным путём совершенствования и дальнейшего развития экспертных систем является создание инструментальных средств, базирующихся на совместном использовании различных моделей представления знаний: продукционных, семантических, фреймов и логических моделей. Все эти модели являются математическим средством построения перспективных интеллектуальных автоматизированных систем обработки информации и управления.