Методы защиты от аварийных режимов

Автор работы: Пользователь скрыл имя, 14 Июня 2014 в 19:45, реферат

Краткое описание

Стремясь защитить двигатели от аварийных режимов, еще с середины прошлого века в энергетике стали применять различную релейную защиту: тепловую, токовую, температурную, фильтровую и комбинированную. Многолетний опыт эксплуатации АД показал, что большинство существующих защит не обеспечивают безаварийную работу АД. Так, например, тепловые реле рассчитывают на длительную перегрузку 25-30% от номинальной. Но, чаще всего, они срабатывают при обрыве одной фазы при нагрузке 60% от номинальной. При меньшей нагрузке реле не срабатывает и АД продолжает работать на двух фазах и выходит из строя в результате перегрева изоляции обмоток. Правильный выбор защитного устройства – это важный фактор в обеспечении безопасной эксплуатации АД.

Прикрепленные файлы: 1 файл

САМЕ НУЖНІШЕ.doc

— 70.00 Кб (Скачать документ)

   Термисторы в основном делятся на два класса: PTC типа – полупроводниковые резисторы с положительным температурным коэффициентом сопротивления и NTC типа – полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления. Для защиты электродвигателей используются в основном PTC термисторы (позисторы), обладающие свойством резко увеличивать свое сопротивление, когда достигнута некоторая характеристическая температура T Ref. 

 

 

Типовая зависимость сопротивления PTC -термистора от температуры

.

Применительно к двигателю, это максимально допустимая температура нагрева обмоток статора для данного класса изоляции. Три (для двухобмоточных двигателей шесть) PTC -термистора соединены последовательно и подключены ко входу электронного блока защиты. Блок настроен таким образом, что при превышении суммарного сопротивления цепочки срабатывает контакт выходного реле, управляющий расцепителем автомата или катушкой магнитного пускателя. Термисторная защита предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру двигателя. Это касается, прежде всего, двигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя системы принудительного охлаждения.

Недостатками данного вида защиты является то, что с датчиками выпускаются далеко не все типы двигателей. Это особенно касается двигателей отечественного производства. Датчики могут устанавливаться только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого двигателя. Они требуют наличия специального электронного блока: термисторного устройства защиты двигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащее для отключения катушки пускателя или электромагнитного расцепителя.

Для более оперативного реагирования на сверхнормативные повышения температуры обмотки статора, в корпус двигателя встраивают биметаллические выключатели (термостаты).

 

Термостаты,  их иногда еще называют реле температуры, представляют из себя биметаллические регуляторы, работающие по принципу температурной отсечки. Принцип работы термостата основан на температурной деформации металла с различным коэффициентом теплового расширения. Состоят из неподвжной контактной пластины, закрепленной в корпусе, биметаллической мембраны, изгибающейся в зависимости от температуры и подвижной контактной группы, прикрепленной к ней стержнем. Для защиты двигателей обычно используются три (по одному на каждую обмотку) нормально замкнутых термостата, включенных последовательно и подключенных непосредственно к схеме управления двигателем. При превышении критической температуры обмотки они мгновенно разрывают свою цепь, что приводит к отключению двигателя.

Большинство из описанных защитных устройств, работающих по принципу измерения прямого или косвенного теплового действия тока, очень плохо реагируют на аварии, связанные с авариями сетевого напряжения. Для защиты от такого вида аварий используют реле напряжения и контроля фаз.

 

Реле напряжения и контроля фаз (мониторы напряжения).

 

Предназначены для постоянного контроля параметров сетевого напряжения и управления трехфазными электроустановками в т. ч. АД, путем отключения их от электрической сети в случае наступления аварийных режимов: недопустимых перепадов напряжения (скачки и провалы напряжения); обрывы, слипания, перекосы, нарушения последовательности фаз и последующего автоматического повторного включения электродвигателя после возвращения параметров сети в норму, если иное не предусмотрено технологическим процессом.

Как показывает статистика, до 80% аварий электродвигателя, напрямую или косвенно связаны именно с авариями сетевого напряжения. Для защиты АД наиболе целесообразно применение т. н. мониторов напряжения, контролирующих несколько видов сетевых аварий.

Большинство из присутствующих на рынке реле напряжения, не обладают указанной универсальностью. Одни из них контролируют только обрыв фаз, другие превышение или понижение напряжения, третьи перекос фаз и т.д. Это приводит к необходимости использования нескольких аналогичных реле одновременно, что неоправданно усложняет и удорожает схему, приводит к повышенному энергопотреблению и тепловыделению, уменьшает надежность.

По схемотехнике данный класс реле условно можно разделить на две группы: аналоговые и цифровые. О преимуществах цифровой техники перед аналоговой сказано достаточно много. Отметим только, что характеристики аналоговых реле напряжения очень сильно зависят от параметров самого измеряемого напряжения и температуры окружающей среды. Их отличает низкая надежность, большие габариты и повышенное энергопотребление, работа по пиковым значениям напряжения, т. к. средствами аналоговой техники практически невозможно вычислить действующее значение напряжения.

Микропроцессорные мониторы напряжения способны в одном малогабаритном устройстве совместить большинство функций, производят работу по действующему значению напряжения, различают виды аварий, имеют множество регулируемых и настраиваемых параметров. Специально для защиты АД у лучших образцов реле имеется независимая регулируемая (или «зашитая») уставка по минимальному напряжению для отстройки от пусковых посадок. Совмещать эту уставку с временем реакции (срабатывания) реле недопустимо, т.к. точно с такой же задержкой реле будет реагировать и на тяжелые аварии, такие как обрыв фаз или сильный перекос. Такие мониторы имеют регулировку АПВ в широких пределах (для управления оборудованием с длительными переходными процессами), а также возможность контроля контактов магнитного пускателя. Последняя функция наиболее актуальна для мощных двигателей или для двигателей, работающих в старт-стопном режиме (например, для электродвигателей компрессоров).

 


Информация о работе Методы защиты от аварийных режимов