Автор работы: Пользователь скрыл имя, 18 Декабря 2014 в 17:02, реферат
Lithium-ion batteries are incredibly popular these days. You can find them in laptops, PDAs, cell phones and iPods. They're so common because, they're some of the most energetic rechargeable batteries available.
Lithium-ion Batteries
Lithium-ion batteries are incredibly popular these days. You can find them in laptops, PDAs, cell phones and iPods. They're so common because, they're some of the most energetic rechargeable batteries available.
Lithium-ion batteries have also been in the news lately. That’s because these batteries have the ability to burst into flames occasionally. It's not very common -- just two or three battery packs per million have a problem -- but when it happens, it's extreme. In some situations, the failure rate can rise, and when that happens you end up with a worldwide battery recall that can cost manufacturers millions of dollars.
So the question is, what makes these batteries so energetic and so popular? How do they burst into flame? And is there anything you can do to prevent the problem or help your batteries last longer? In this article, we'll answer these questions and more.
Lithium-ion batteries are popular because they have a number of important advantages over competing technologies:
Here is a way to get a perspective on the energy density. A typical lithium-ion battery can store 150 watt-hours of electricity in 1 kilogram of battery. A NiMH (nickel-metal hydride) battery pack can store perhaps 100 watt-hours per kilogram, although 60 to 70 watt-hours might be more typical. A lead-acid battery can store only 25 watt-hours per kilogram. Using lead-acid technology, it takes 6 kilograms to store the same amount of energy that a 1 kilogram lithium-ion battery can handle. That's a huge difference.
That is not to say that lithium-ion batteries are flawless. They have a few disadvantages as well:
Many of these characteristics can be understood by looking at the chemistry inside a lithium-ion cell. We'll look at this next.
Inside a Lithium-ion Battery Pack and Cell
Lithium-ion battery packs come in all shapes and sizes, but they all look about the same on the inside. If you were to take apart a laptop battery pack (something that we DO NOT recommend because of the possibility of shorting out a battery and starting a fire) you would find the following:
The computer, which comprises:
If the battery pack gets too hot during charging or use, the computer will shut down the flow of power to try to cool things down. If you leave your laptop in an extremely hot car and try to use the laptop, this computer may prevent you from powering up until things cool off. If the cells ever become completely discharged, the battery pack will shut down because the cells are ruined. It may also keep track of the number of charge/discharge cycles and send out information so the laptop's battery meter can tell you how much charge is left in the battery.
It's a pretty sophisticated little computer, and it draws power from the batteries. This power draw is one reason why lithium-ion batteries lose 5 percent of their power every month when sitting idle.
Lithium-ion Cells
As with most batteries you have an outer case made of metal. The use
of metal is particularly important here because the battery is pressurized.
This metal case has some kind of pressure-sensitive vent hole. If the battery ever gets so hot
that it risks exploding from over-pressure, this vent will release the
extra pressure. The battery will probably be useless afterwards, so
this is something to avoid. The vent is strictly there as a safety measure.
So is the Positive Temperature Coefficient (PTC) switch,
a device that is supposed to keep the battery from overheating.
This metal case holds a long spiral comprising three thin sheets pressed together:
Inside the case these sheets are submerged in an organic solvent that acts as the electrolyte. Ether is one common solvent.
The separator is a very thin sheet of microperforated plastic. As the name implies, it separates the positive and negative electrodes while allowing ions to pass through.
The positive electrode is made of Lithium cobalt oxide, or LiCoO2. The negative electrode is made of carbon. When the battery charges, ions of lithium move through the electrolyte from the positive electrode to the negative electrode and attach to the carbon. During discharge, the lithium ions move back to the LiCoO2 from the carbon.
The movement of these lithium ions happens at a fairly high voltage, so each cell produces 3.7 volts. This is much higher than the 1.5 volts typical of a normal AA alkaline cell that you buy at the supermarket and helps make lithium-ion batteries more compact in small devices like cell phones. See How Batteries Work for details on different battery chemistries.
We'll look at how to prolong the life of a lithium-ion battery and explore why they can explode next.
Lithium-ion Battery Life and Death
Lithium-ion battery packs are expensive, so if you want to make yours to last longer, here are some things to keep in mind:
Exploding Batteries
Now that we know how to keep lithium-ion batteries working longer, let's
look at why they can explode.
If the battery gets hot enough to ignite the electrolyte, you are going to get a fire. There are video clips and photos on the Web that show just how serious these fires can be. The CBC article,"Summer of the Exploding Laptop," rounds up several of these incidents.
When a fire like this happens, it is usually caused by an internal short in the battery. Recall from the previous section that lithium-ion cells contain a separator sheet that keeps the positive and negative electrodes apart. If that sheet gets punctured and the electrodes touch, the battery heats up very quickly. You may have experienced the kind of heat a battery can produce if you have ever put a normal 9-volt battery in your pocket. It a coin shorts across the two terminals, the battery gets quite hot.
In a separator failure, that same kind of short happens inside the lithium-ion battery. Since lithium-ion batteries are so energetic, they get very hot. The heat causes the battery to vent the organic solvent used as an electrolyte, and the heat (or a nearby spark) can light it. Once that happens inside one of the cells, the heat of the fire cascades to the other cells and the whole pack goes up in flames.
It is important to note that fires are very rare. Still, it only takes a couple of fires and a little media coverage to prompt a recall.