Автор работы: Пользователь скрыл имя, 14 Октября 2014 в 19:40, контрольная работа
Определенную роль в формировании российской экономической мысли играли представители исторической школы, в том числе авторы исследований и работ по истории экономических учений - В.В. Святловский (1869-1927), А.И. Чупров, М.И. Туган-Барановский.
Но "традиция" замалчивания вклада и значимости российских ученых не была преодолена, сохраняется она и сейчас. Такова своеобразная форма "критики", отстранения западной академической науки от публикаций экономистов, как правило отличающихся своей социальной направленностью.
Введение………………………………………………………………………………….….…2
1.Организационно-производственная школа
1.1 Учения организационно-производственной школы в России и СССР…….……..…….4
1.2 А.Н. Челинцев и его вклад в развитие мировой экономической мысли……….……….9
2. Экономико-математическая школа.
2.1 Учения экономико-производственной школы в России и СССР……………………….13
2.2 Л.В. Канторович и его вклад в развитие мировой экономической мысли………….….16
Заключение………………………………………………………………..……………….……19
Список использованных источников………………………………………………….….…..21
Гражданская война, в которой он не поддерживал ни одну из сторон, застала ученого на Кубани во время руководимой им экспедиции «по исследованию казацко-крестьянского сельскохозяйственного производства».
1 марта 1920 г., по договоренности
с посольством Сербии о
В творческом плане югославский период жизни А.Н. Челинцева (1920 - 1923 гг.) был весьма результативен. Он был назначен штатным профессором Сельскохозяйственного факультета Белградского университета, где читал лекции по географии, статистике, организации и экономии сельского хозяйства. Он сразу же включился в активную научно-исследовательскую работу: продолжал исследования, начатые им в России, так как условия в аграрном секторе Югославии соответствовали условиям дореволюционной России. Получив командировку от университета, он объездил практически всю Югославию, проделал ряд исследований организации и техники крестьянского сельского хозяйства страны, изучил статистические материалы. В итоге им был разработан учебный курс сельскохозяйственной статистики Югославии, написано несколько научных работ, подготовлены и сделаны доклады в Русском академическом обществе в Белграде, в том числе доклад «Сельскохозяйственные районы Сербии».
2. Экономико-математическая школа
2.1 Учение экономико-математической школы в СССР и России
Признанный мировой экономической наукой и практикой феномен российской интеллектуальной мысли - разработка теоретических экономических идей, основанных на применении математических методов.
Эта научная традиция сложилась во 2-й половине XIXв. на основе развития "чистой" математики и разработок экономистов, использовавших математический аппарат для количественных оценок хозяйственных процессов.
Важное место в развитии математического направления в экономике занимают работы советских ученых: Л. В. Канторовича, В. В. Новожилова, В. С. Немчинова, В. Леонтьева.
Первым достижением в развитии экономико-математической школы стала разработка советскими учеными межотраслевого баланса производства и распределения продукции в народном хозяйстве страны за 1923/24 хозяйственный год. В основу методологии их исследования были положены модели воспроизводства К. Маркса, а также модели В. К. Дмитриева. Эта работа нашла международное признание и предвосхитила развитие американским экономистом русского происхождения В. В. Леонтьевым его знаменитого метода “затраты — выпуск”.
Примерно в это же время советский экономист Г. А. Фельдман представил в Комиссию по составлению 1-го пятилетнего плана доклад “К теории темпов народного дохода”, в котором предложил ряд моделей анализа и планирования синтетических показателей развития экономики. Этим были заложены основы теории экономического роста. Выдающийся российский ученый Н. Д. Кондратьев разработал теорию долговременных экономических циклов, нашедшую мировое признание. Однако в начале 30-х гг. экономико-математические исследования в СССР были практически свернуты, а Фельдман, Кондратьев и сотни других советских экономистов были репрессированы, погибли в застенках ГУЛАГа. Продолжались лишь единичные, разрозненные исследования.
В одном из них, работе Л. В. Канторовича “Математические методы организации и планирования производства” (1939 г.), были впервые изложены принципы новой отрасли математики, которая позднее получила название линейного программирования, а если смотреть шире, то этим были заложены основы фундаментальной для экономики теории оптимального распределения ресурсов. Л. В. Канторович четко сформулировал понятие экономического оптимума и ввел в науку оптимальные, объективно обусловленные оценки — средство решения и анализа оптимизационных задач. Одновременно советский экономист В. В. Новожилов пришел к аналогичным выводам относительно распределения ресурсов. Он выработал понятие оптимального плана народного хозяйства — как такого плана, который требует для заданного объема продукции наименьшей суммы трудовых затрат, и ввел понятия, позволяющие находить этот минимум: в частности, понятие “дифференциальные затраты народного хозяйства по данному продукту”, близкое по смыслу к оптимальным оценкам Л. В. Канторовича.
Большой вклад в разработку экономико-математических методов внес академик В. С. Немчинов: он создал ряд новых моделей МОБ, в том числе модель МОБ экономического района, а также ряд оригинальных экономико-статистических моделей; велики его заслуги в области организационного оформления и развития экономико-математического направления советской науки. Он основал первую в стране экономико-математическую лабораторию, впоследствии на ее базе и на базе нескольких других коллективов был создан Центральный экономико-математический институт АН СССР, ныне ЦЭМИ РАН (см. ниже).
В 1965 г. академикам Л. В. Канторовичу, В. С. Немчинову и проф. В. В. Новожилову за научную разработку метода линейного программирования и других математико-экономических моделей была присуждена Ленинская премия. В 1975 г. Л. В. Канторович был также удостоен Нобелевской премии по экономике.
Большой удар по экономико-математическому направлению был нанесен в 1983 г., когда бывший тогда секретарем ЦК КПСС К.У. Черненко обрушился с явно несправедливой и предвзятой критикой на ЦЭМИ АН СССР, после чего институт жестоко пострадал: подвергся реорганизации, был разделен надвое, потом еще раз надвое, из него ушел ряд ведущих ученых.
Тем не менее, прошедшие годы ознаменовались серьезными научными и практическими достижениями экономико-математического направления советской экономической науки. В ряде аспектов, прежде всего теоретических, оно сумело занять передовые позиции в мировой науке.
Например, в области математической экономики (не говоря уже об открытиях Л. В. Канторовича) широко известны советские исследования процессов оптимального экономического роста (В. Л. Макаров, С. М. Мовшович, А. М. Рубинов и др.), ряд моделей экономического равновесия; сделанная еще в 1976 г. В. М. Полтеровичем попытка синтеза теории равновесия и теории экономического роста; работы отечественных ученых в области теории игр, теории группового (социального) выбора и многие другие. Ряд работ был выполнен в области микроэкономического моделирования и планирования деятельности предприятий (А. А. Модин, В. И. Данилин). В каком-то смысле опережая время, экономисты-математики еще в 70-е гг. приступили к моделированию и изучению таких явлений, приобретших острую актуальность в период перестройки, как “самоусиление дефицита”, экономика двух рынков — с фиксированными и гибкими ценами, функционирование экономики в условиях неравновесия. Активно развивается математический аппарат, в частности такие его разделы, как линейное и нелинейное программирование (Е. Г. Гольштейн), дискретная оптимизация (А.А. Фридман), методы прикладного математико-статистического анализа (С.А. Айвазян).
В заключении можно сказать, что разработка математических методов и моделей оптимизации отдельных производственно-экономических процессов, общественного производства в целом, оказалось тесно связанной с конкретными проблемами экономической теории: теорией стоимости, ценообразования. Во всей полноте вновь встала проблема измерения затрат и результатов производства, эффективности капиталовложений и путей рационального использования ресурсов производства. Возникла необходимость выявления сущности предельных величин, их роли в экономическом анализе, в процессах ценообразования и определения эффективности затрат. Применение математических методов и моделей в экономике поставило перед экономической наукой ряд важных методологических проблем, связанных с выяснением закономерностей оптимизации общественного производства и его отдельных процессов, вызвало необходимость анализа и обобщения теоретических основ математического моделирования народнохозяйственных процессов.
Вклад представителей экономико-математической школы в развитие мировой экономической мысли очень велик. Признанный мировой экономической наукой и практикой феномен российской интеллектуальной мысли - разработка теоретических экономических идей, основанных на применении математических методов. В области математической экономики широко известны советские исследования процессов оптимального экономического роста ряд моделей экономического равновесия; сделанная еще в 1976 г. В.М. Полтеровичем попытка синтеза теории равновесия и теории экономического роста; работы отечественных ученых в области теории игр, теории группового (социального) выбора и многие другие. Ряд работ был выполнен в области микроэкономического моделирования и планирования деятельности предприятий были впервые изложены принципы новой отрасли математики, которая позднее получила название линейного программирования, были проведены широкие исследования в области применения программно-целевых методов в планировании и управлении народным хозяйством.
2.2 Л.В. Канторович
и его вклад в развитие
Л.В. Канторович родился 19 января 1912 года в Петербурге в семье врача. Дарование мальчика проявилось очень рано. В 1926 году в возрасте 14 лет он поступил в Ленинградский университет. Уже через год начал активную деятельность в научных семинарах и в течение двух последующих лет ему удалось решить ряд трудных и принципиальных проблем, которые в ту пору были в центре внимания математиков.
Закончив ЛГУ в 1930 году, Леонид Витальевич начал педагогическую работу в ленинградских ВУЗах, сочетая ее с интенсивными научными исследованиями. Уже в 1932 году он – профессор Ленинградского института инженеров гражданского строительства и доцент ЛГУ. В 1934 году Леонид Витальевич становится профессором своей alma mater. В 1935 г. ему была присуждена ученая степень доктора физико-математических наук без защиты диссертации. С ЛГУ и Ленинградским отделением знаменитого МИАН (Математический институт им. В.А. Стеклова Академии наук СССР) Леонид Витальевич связан до перехода в Сибирское Отделение АН СССР в конце пятидесятых годов.
Основные научные труды в области математики Леонид Витальевич создал именно в свой “ленинградский” период. В тридцатые годы он публикует больше статей по чистой математике. Именно в этот период им были заложены основы новой математической теории — теории упорядоченных пространств, занимающей особое место в его творчестве. Леонид Витальевич дал разнообразные приложения своей теории ко многим направлениям современной математики.
Сороковые годы для Л.В. Канторовича — также время работ по вычислительной математике, где он становится признанным лидером в СССР. В начале 50-х годов по инициативе Л.В. Канторовича на математико-механическом факультете Ленинградского университета была организована первая в нашей стране специализация по вычислительной математике, а в дальнейшем и кафедра, которую первоначально возглавил его соавтор В.И. Крылов. С работами по вычислительной математике связано непосредственное участие Л.В. Канторовича в развитии вычислительной техники. Он руководил конструированием новых вычислительных устройств, ему принадлежит ряд изобретений в этой области. Совместно с учениками он разрабатывал оригинальные принципы машинного программирования для численных расчетов и, что было в те годы совершенно необычайно, для проведения сложных аналитических выкладок. В 1949 году за работы в области численных методов Л.В. Канторович был удостоен Сталинской (Государственной) премии.
С конца тридцатых годов ярко заявляет о себе Л.В. Канторович-экономист. В 1939 году выходит в свет его знаменитая брошюра “Математические методы организации и планирования производства”, ознаменовавшая рождение линейного программирования. В дальнейшем в его творчестве экономическая проблематика выходит на первый план. Уже в 1942 г. им был написан первый вариант капитальной монографии “Экономический расчет наилучшего использования ресурсов”. Эта работа настолько опережала время и настолько не соответствовала догматам тогдашней политической экономии, что ее публикация оказалась возможной только в 1959 г. и повторно в 1960 г. Тогда пионерские идеи Л.В. Канторовича были легализованы, получили некоторое признание и начали использоваться в экономической практике. Однако это потребовало от Леонида Витальевича упорной борьбы, история которой весьма поучительна, но до сих пор ждет своего исследователя. В дальнейшем эта книга была переведена на английский, французский, японский, румынский, словацкий, польский, сербский, испанский языки. Приоритет Л.В. Канторовича был признан и на Западе, о чем свидетельствует присуждение ему Нобелевской премии.
В 1957 году Леонида Витальевича приглашают на работу во вновь создаваемое Сибирское отделение Академии наук СССР и избирают в первые выборы по Сибирскому отделению членом-корреспондентом по Отделению экономики. С этого момента основные публикации Леонида Витальевича относятся к экономике, за исключением, прежде всего, всемирно известного курса функционального анализа — Канторович Л.В., Акилов Г.П. «Функциональный анализ».
Шестидесятые годы для Леонида Витальевича — время признания. В 1964 году он избран действительным членом АН СССР по Отделению математики. В 1965 г. исследования Л.В. Канторовича в области экономико-математических методов были удостоены Ленинской премии (вместе с активно поддержавшим его В.С. Немчиновым и пришедшим к аналогичным идеям от экономики В. В. Новожиловым), а в 1975 г. K.В. Канторович вместе с американским экономистом Т. Купмансом был отмечен Нобелевской премией по экономике с формулировкой “за вклад в теорию оптимального использования ресурсов”. В эти годы он особенно интенсивно развивает и отстаивает свой тезис о взаимопроникновении математики и экономики, тратит громадные усилия на внедрение идей и методов современной науки в практику советской экономики.
В 1971 г. Л.В. Канторович был переведен на работу в Москву, где руководил сначала Проблемной лабораторией Института управления народным хозяйством ГКНТ, а с 1976 г.— Отделом системного моделирования научно-технического прогресса Всесоюзного научно-исследовательского института системных исследований. Все эти годы Л.В. Канторович являлся членом Государственного комитета по науке и технике, участником ряда других комитетов и министерств как член научно-технических и экспертных советов.
Выдающиеся заслуги Л.В. Канторовича были отмечены государством. Он награжден двумя орденами Ленина — в те годы наивысшей наградой страны, тремя орденами Трудового Красного Знамени, орденами “Знак Почета” и Отечественной войны II степени, многими медалями.
Леонид Витальевич Канторович вошел в плеяду выдающихся ученых двадцатого столетия благодаря своему капитальному вкладу в математику и экономику. Он по праву считается одним из основоположников современного математико-экономического направления, ядро которого составляют теория и модели линейных экстремальных задач. Это направление было затем переоткрыто и развито в трудах других ученых (прежде всего, Дж. Данцига) и получило название “линейное программирование”.
Идеи и методы, вызревшие в рамках линейного программирования, положили начало глубоким математическим исследованиям, вышли далеко за пределы экономических приложений и используются в самых разнообразных сферах человеческой деятельности: физике, химии, энергетике, геологии, биологии, механике и теории управления. Линейное программирование оказывает существенное влияние также на прогресс вычислительной математики и вычислительной техники. Леониду Витальевичу хватило не только таланта выдающегося математика и экономиста, но и интеллектуальной решимости и гражданского мужества бороться за признание своих экономико-математических теорий.
Информация о работе Вклад отечественных учёных в развитие экономической науки