Новые материалы - нанотехнологии текстиля

Автор работы: Пользователь скрыл имя, 20 Июня 2013 в 18:28, контрольная работа

Краткое описание

Колористическое направление связано с разработкой принципиально новых видов армейского камуфляжа и развитием моды, предлагающей одежду с необычными цветовыми эффектами. Суть их состоит в использовании фото-, термо- и гидрохромных красителей. Окрашенные ими ткани могут изменять цвет под действием воды, тепла и света подобно хамелеонам. Изменения могут иметь локальный характер неопределенной формы и четко выраженный рисунок на тех или иных деталях или участках одежды.

Содержание

Введение 3
1 Интеллектуальный текстиль 4
2 Производство нановолокон 5
3 Нанотехнологии в заключительной отделке 8
4 Ароматные ткани 13
Заключение 14
Список использованной литературы 15

Прикрепленные файлы: 1 файл

ВВед в проф деят.doc

— 546.00 Кб (Скачать документ)

Федеральное агентство  по образованию 
ГОУ ВПО 
Уфимская Государственная Академия

Экономики и  Сервиса

Кафедра технологии и  конструирования одежды

КОНТРОЛЬНАЯ РАБОТА 
по дисциплине «Введение в профессиональную деятельность»

по теме: Новые материалы - нанотехнологии

Выполнила:

студентка

заочного факультета

группы БКИЗК-1

Низамутдинова Ф.И.

Проверил(а):

доцент кафедры

канд. техн. наук

Бикбулатова А.А.

Уфа-2012

 

Содержание

Введение 3

1 Интеллектуальный текстиль 4

2 Производство нановолокон 5

3 Нанотехнологии в заключительной отделке 8

4 Ароматные ткани 13

Заключение 14

Список использованной литературы 15

 

 

Введение

Развитие работ в области «умных волокон» идет в двух направлениях:

  • колористическом;
  • интеллектуальном.

Колористическое направление  связано с разработкой принципиально новых видов армейского камуфляжа и развитием моды, предлагающей одежду с необычными цветовыми эффектами. Суть их состоит в использовании фото-, термо- и гидрохромных красителей. Окрашенные ими ткани могут изменять цвет под действием воды, тепла и света подобно хамелеонам. Изменения могут иметь локальный характер неопределенной формы и четко выраженный рисунок на тех или иных деталях или участках одежды.

Работы по использованию  термо-, фотохромных красителей и  материалов для военных целей  и космоса начали интенсивно развиваться в 70-е годы прошлого века. По уровню разработок камуфляжа впереди идут США и Япония. Интенсивные исследования проводятся в Китае, Южной Корее, Тайване. Ткани-«хамелеоны», способные изменять свой цвет в зависимости от внешних факторов – идеальный материал для армейского камуфляжа. Подобно коже живых рептилий защитная одежда военного сможет мимикрировать, адаптируясь к изменениям окружающей среды.

Реализация этих идей весьма заманчива и интересна для армии, но в то же время достаточно сложна и пока не осуществлена полностью, поскольку, в отличие от бытовой одежды, к армейскому камуфляжу предъявляются очень жесткие требования по устойчивости окрасок к действию светопогоды, трению, стиркам и химчистке.

 

 

    1. Интеллектуальный текстиль

Интеллектуальное направление  в развитии умного текстиля - это создание и промышленное освоение технологий, обеспечивающих получение текстильных материалов с широким набором новых свойств, расширяющих области их применения. В первую очередь работы в этом направлении были связаны с армейскими заказами.

«Умные» ткани должны уметь «следить»  за сердечным ритмом солдата, вводить, если необходимо, соответствующие лекарства или купировать раны, сигнализировать о самочувствии больного. Одежда из «умных» тканей должна самоочищаться, поддерживать требуемую температуру в «пододежном» пространстве, нейтрализовать химические отравляющие вещества, обладать свойствами бронежилета.

Экипировка военного должна при этом оставаться легкой, не стесняющей движений, а система связи, включая дисплей компьютера и клавиатуру, быть не только легкой, но и мягкой, способной изменять свою конфигурацию.

Реализовать подобное «чудо» и сделать его явью стало возможным  в связи с интеграцией наукоемких технологий (hi-tech) в текстильное производство. Ведущую роль в этом сыграли нанотехнологии.

 

 

    1. Производство нановолокон

Нановолокна можно производить, наполняя традиционные волокнообразующие полимеры отличающимися по конфигурации наночастицами различных веществ или путем выработки ультратонких (диаметром в рамках наноразмеров) волокон.

Наполненные наночастицами  волокна начали производить с 1990 года. Такие волокна малоусадочны, имеют пониженную горючесть, повышенную прочность на разрыв и истирание и в зависимости от природы вводимых наночастиц могут приобретать другие защитные свойства, требующиеся человеку.

В качестве наполнителей волокон широко используют углеродные нанотрубки с одной или несколькими стенками. Волокна, наполненные нанотрубками, приобретают уникальные свойства - они в 6 раз прочнее стали и в 100 раз легче ее. Наполнение волокон углеродными наночастицами на 5-20% от массы придает им также сопоставимую с медью электропроводность и химическую устойчивость к действию многих реагентов.

Углеродные нанотрубки используются в качестве армирующих структур, блоков для получения материалов с высокими прочностными свойствами: экранов дисплеев, сенсоров, хранилищ жидкого топлива, воздушных зондов и т.д. Например, при наполнении углеродными нанотрубками поливинилспиртового волокна, получаемого по коагуляционной технологии прядения, оно становится в 120 раз выносливее, чем стальная проволока и в 17 раз легче, чем волокно Кевлар (самое известное и прочное арамидное химволокно, получаемое по традиционной технологии и используемое в бронежилетах). Подобные нановолокна уже сейчас начинают применять для производства взрывозащищающей одежды и одеял, защиты от электромагнитных излучений.

Очень ценные и полезные свойства химические волокна приобретают  при наполнении их наночастицами  глинозема. Наночастицы глинозема в виде мельчайших хлопьев обеспечивают высокую электро- и теплопроводность, химическую активность, защиту от УФ-излучения, огнезащиту и высокую механическую прочность. У полиамидных волокон, содержащих 5% наночастиц глинозема, на 40% повышается разрывная нагрузка и на 60% - прочность на изгиб. Такие волокна используют в производстве средств защиты от ударов, например защитных касок. Известно, что полипропиленовые волокна очень трудно окрашиваются, что существенно ограничивает область их применения в производстве материалов бытового назначения. Введение 15% наночастиц глинозема в структуру полипропиленовых волокон обеспечивает возможность крашения их различными классами красителей с получением окрасок глубоких тонов.

Интенсивно развиваются  исследования и производство синтетических волокон, наполненных наночастицами оксидов металлов: ТiO2, Al2O3, ZnO, MgО. Волокна приобретают следующие свойства:

  • фотокаталитическую активность;
  • УФ-защиту;
  • антимикробные свойства;
  • электропроводность;
  • грязеотталкивающие свойства;
    • фотоокислительную способность в различных химических и биологических условиях.

Еще одним интересным направлением в производстве нановолокон является придание им ячеистой, пористой структуры с наноразмерами пор. При этом достигается резкое снижение удельной массы (получение легких материалов), хорошая теплоизоляция, устойчивость к растрескиванию. Образующиеся нанопоры волокон могут быть заполнены различными жидкими, твердыми и даже газообразными веществами с различным функциональным назначением (медицина, ароматизация текстильных полотен, биологическая защита).

Другой тип нановолокон - ультратонкие волокна, диаметр которых не превышает 100 нм. Эта тонина обеспечивает высокое значение удельной поверхности и, как следствие, высокое удельное содержание функциональных групп. Последнее обеспечивает хорошую сорбционную способность и каталитическую активность материалов из подобных волокон.

В Европе (Англия, Франция), США, Израиле  и Японии параллельно идут интенсивные  работы по созданию синтетических белковых волокон, имитирующих структуру паутины, имеющей непревзойденные физико-механические свойства. Используя для выработки подобного белка другие продуценты (микроорганизмы, растения), удалось получить полимерные белковые нановолокна толщиной около 100 нм. Мягкий и сверхпрочный «паучий шелк» сможет заменить жесткий и негибкий кевлар в бронежилетах. Области применения «паучьего шелка» разнообразны: это и хирургические нити, и невесомые и чрезвычайно прочные бронежилеты, и легкие удочки, и рыболовные снасти. Пока речь идет о малых партиях, но нанотехнологии развиваются столь бурно и стремительно, что промышленного выпуска изделий, изготовленных из «паучьего шелка», ждать недолго.

 

 

    1. Нанотехнологии в заключительной отделке

При заключительной отделке  текстильных материалов используют наночастицы различных веществ в виде наноэмульсий и нанодисперсий. При этом материалам могут придаваться такие свойства, как водо- и маслостойкость, пониженная горючесть, противозагрязняемость, мягкость, антистатический и антибактериальный эффекты, термостойкость, формоустойчивость и др.

Наиболее известной нанотехнологией  заключительной отделки является отделка Teflon, обеспечивающая водо-, масло-, грязезащитные  эффекты. Для ее реализации используют наноэмульсии фторуглеродных полимеров. В отличие от традиционных технологий аналогичного назначения, наночастицы, придавая требуемые эффекты, не перекрывают капиллярно-пористую структуру волокнистого материала, он остается «дышащим», поскольку его микропоры остаются открытыми для воздухообмена. Придаваемые эффекты устойчивы к многократным стиркам. Отделка по нанотехнологиям придает текстильным материалам из химических волокон хлопкоподобный внешний вид, а изделия из хлопка становятся малосминаемыми и приобретают формоустойчивость.

В разных странах достаточно широко проводятся исследования по созданию «самоочищающихся» текстильных материалов с помощью нанотехнологий. Задача исследователей - придать текстилю такой же эффект, какой свойственен живой природе: листьям растений, крыльям бабочек и насекомых, панцирям жуков. Наноэмульсии формируют на волокнах тонкую трехмерную поверхностную структуру, с которой вода, масло и грязь легко скатываются и смываются. Получаемый «супергидрофобный» эффект приводит к тому, что образующаяся на поверхности материала круглая капля способна скатываться с нее без следа при малейшем наклоне. Такие загрязнения, как пыль и сажа удаляются вместе с каплями воды, а материал приобретает эффект «самоочищения».

Использование наноэмульсий дает возможность  получать из хлопка текстильные материалы, лицевая сторона которых проявляет гидро-, масло-, грязеооталкивающие свойства, а изнанка остается гидрофильной, способной поглощать влаговыделения тела (пот). Одновременно такому материалу можно придавать различные бактериостатические эффекты, в том числе препятствующие появлению запаха пота. Основное назначение подобных материалов – армейская экипировка, спортивная одежда и одежда для активного отдыха.

В полимерную наноэмульсию можно также  вводить наночастицы оксидов  металлов TiO2, MgO, обладающих каталитической активностью, и пьезокерамические частицы для производства волоконных сенсоров, регистрирующих сердечный ритм и пульс при контакте такого материала с кожей человека.

Нанотехнологии позволили  создать токопроводящие текстильные  материалы, которые оказались востребованными не только для военного назначения, но и во многих отраслях мирной жизни. Электропроводящие текстильные материалы дают широкий простор для инноваций в производстве антистатической одежды и электромагнитного экранирования, для снятия заряда или подавления радиополей, а также для производства тканей с подогревом.

Сегодня токопроводящие ткани благодаря нанотехнологиям  нанесения металлов - мягкие и легкие материалы, их можно стирать, подвергать химчистке.

Обычно напылению подвергают волокна, а не ткани. При переработке  на ткацких станках такие волокна  не создают проблем. Первые наноматериалы  для напыления были выпущены на рынок  фирмой DuPont, которая применяла наночастицы серебра. В настоящее время помимо серебра предложены более дешевые и доступные металлы.

Электропроводящие свойства придаются не только за счет металлизации волокон, но и другими способами. Для гидратцеллюлозных волокон  типа лиоцелл предложено введение в структуру волокна наночастиц электропроводной сажи. В зависимости от концентрации последней свойства электропроводимости будут изменяться. Электропроводные материалы из волокон лиоцелла находят применение в широкой области электрорезисторных изделий.

Создатели спортивной одежды предложили еще одну модель для мотоциклистов и велосипедистов - нагревающийся жилет, который подсоединен к мотоциклу или велосипеду, а вырабатываемая энергия передается к токопроводящей одежде. Максимальная температура нагрева – 43 оС. Жилет можно но сить и автономно, без транспорта, для этого разработан специальный пояс с батареями. В улучшенную модель жилета встроен миникомпьютер, который позволяет программировать нагрев разных частей тела. Разработчики утверждают, что их потребителями могут быть не только экзальтированные любители экстравагантной одежды, а обычные рабочие, машинисты, «дальнобойщики», работа которых связана со значительными колебаниями температуры.

Для создания обогреваемой одежды можно использовать не только токопроводящие ткани. Предложено вводить в волокна содержащие парафин микрокапсулы, которые способны поглощать тепло, выделяемое, например, телом лыжника, и, наоборот, отдавать его при перепаде температур и уменьшении теплоотдачи телом. Куртки с таким «теплообогревом» уже имеются в продаже.

Немецкая компания Infineon Technologies разработала образцы тканей и напольных покрытий, содержащих в своей структуре кремниевые чипы и соединительные волокна. Сеть чипов, вплетенная в ткань, самоорганизующаяся: один чип связывается со своими ближайшими соседями, обменивается данными с ними и через них с другими узлами сети. Если из строя выходит один чип, то данные переправляются по другим маршрутам. В текстильный материал могут вживляться самые разные чипы - светодиоды и сенсоры, реагирующие на свет, температуру, влажность, давление и т.п. Напольные покрытия, выполненные подобным образом в помещениях с большим количеством людей, могут, в случае опасности, образуя светящиеся дорожки и знаки, указывать маршруты движения людей к аварийным выходам. С помощью этих покрытий можно даже обнаружить присутствие в помещениях посторонних людей.

Информация о работе Новые материалы - нанотехнологии текстиля