Автор работы: Пользователь скрыл имя, 27 Марта 2014 в 20:52, курсовая работа
К портам подключаются периферийные устройства ввода/вывода. Разъемы портов обычно устанавливаются прямо па системную плату и выносятся на заднюю стенку компьютера. Порты взаимодействуют с южным мостом чипсета, также возможен вариант, когда некоторые порты обслуживаются специализированным чипом SuperlO, который, в свою очередь, взаимодействует с южным мостом. Порты также называют интерфейсами.
Компьютерные порты, как и любая техника, совершенствуются из года в год, становятся компактнее, повышается их проводимость, улучшается эргономичность. К современным компьютерным портам можно отнести такие, как USB 3.0, HDMI, Optical S/PDIF, Apple Thunderbolt и некоторые другие. Всех их характеризует высокая скорость и точность передачи информации.
В) DATA=d — число бит данных (5-8), по умолчанию 7. Значения d=5 и d=6 поддерживаются не всеми компьютерами.
Г) STOP=s — длина интервала стоп-бит: 1, 1,5 или 2. Для скорости 110 бит/с по умолчанию s=2, для остальных — 1. Значение s=1.5 поддерживается не всеми компьютерами.
Д) RETRY=r — реакция на тайм-ауты при выводе, когда командой MODE принтерный вывод перенаправляется на СОМ-порт. Е — сообщение «ошибка», В — «занято», R — «готов», Р — повторные попытки до успешного вывода. N — никаких действий (по умолчанию).
СОМ-порт широко применяется для подключения различных периферийных и коммуникационных устройств, связи с технологическим оборудованием, объектами управления и наблюдения, программаторами, внутрисхемными эмуляторами и прочими устройствами через протокол RS-232C. СОМ-порт может функционировать и как двунаправленный интерфейс, у которого имеются 3 програмно-управляемых выходных линии и 4 программно-читаемых входных линии с двуполярными сигналами. Их использование определяется разработчиком. Существует, например, схема однобитного широтно-импульсного преобразователя, позволяющего записывать звуковой сигнал на диск PC, используя входную линию СОМ-порта. Воспроизведение этой записи через обычный динамик PC позволяет передать речь. В настоящее время, когда звуковая карта стала почти обязательным устройством PC, это не впечатляет, но когда-то такое решение казалось интересным.
USB (англ. Universal Serial Bus — «универсальная последовательная шина») — последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике.
Кабель USB состоит из 4 медных проводников — 2 проводника питания и 2 проводника данных в витой паре, и заземленной оплётки/экрана.
Шина строго ориентирована, имеет понятие «главное устройство» (хост, он же USB контроллер, обычно встроен в микросхему южного моста на материнской плате) и «периферийные устройства». Шина имеет древовидную топологию, поскольку периферийным устройством может быть разветвитель (hub), в свою очередь имеющий несколько нисходящих разъемов «от хоста». Соединение 2 компьютеров — или 2 периферийных устройств — пассивным USB кабелем невозможно. Существуют активные USB кабели для соединения 2 компьютеров, но они включают в себя сложную электронику, эмулирующую Ethernet адаптер, и требуют установки драйверов с обеих сторон.
Устройства могут быть запитаны от шины, но могут и требовать внешний источник питания. Поддерживается и дежурный режим для устройств и разветвителей по команде с шины со снятием основного питания при сохранении дежурного питания и включением по команде с шины.
USB поддерживает «горячее» подключение и отключение устройств. Это достигнуто увеличенной длиной заземляющего контакта разъёма по отношению к сигнальным. При подключении разъёма USB первыми замыкаются заземляющие контакты, потенциалы корпусов двух устройств становятся равны и дальнейшее соединение сигнальных проводников не приводит к перенапряжениям, даже если устройства питаются от разных фаз силовой трёхфазной сети.
Спецификация выпущена в апреле 2000 года. USB 2.0 отличается от USB 1.1 введением режима Hi-speed.
Для устройств USB 2.0 регламентировано три режима работы:
· Low-speed, 10—1500 Кбит/c (используется для интерактивных устройств: клавиатуры, мыши, джойстика)
· Full-speed, 0,5—12 Мбит/с (аудио-, видеоустройства)
· Hi-speed, 25—480 Мбит/с (видеоустройства, устройства хранения информации)
Новый стандарт на порядок превосходит предел в 480 Мбит/с для USB 2.0, устанавливая планку теоретической максимальной скорости передачи данных на отметке в 4.8 Гбит/с. Естественно, стоит отдавать себе отчет в том, что реальная производительность будет несколько ниже заявленной. К тому же контроллеры USB 3.0 пока еще несовершенны, и вряд ли при коммерческом старте потенциал технологии будет реализован полностью. Тем не менее, существующие уже сегодня образцы достигают отменных скоростных характеристик. Например, 27 Гб HD фильм копируется на скорости 3.2 Гбит/с чуть более чем за минуту, тогда как с USB 2.0 при прочих равных условиях необходимо 15 минут.
В отличие от предыдущих реализаций интерфейса, в которых поддерживалась лишь одна операция единовременно, USB 3.0 может производить чтение и запись данных в двух направлениях независимо. Это было достигнуто добавлением по паре выделенных SuperSpeed линий как для передачи, так и для приема данных. Таким образом, общее число каналов возросло с четырех у USB 2.0 до девяти, если считать отдельную землю USB 3.0.
Кроме того, был усовершенствован и протокол работы Universal Serial Bus. Хотя понятия "хост" и "клиент" остались, отныне общение между контроллерами происходит на более интеллектуальном уровне. Если раньше хост в ожидании начала передачи данных мог постоянно посылать нескончаемые запросы клиенту, теперь происходит ожидание специального сигнала на начало процесса от самого подключенного устройства.
Новая сигнальная схема, упомянутая выше, предполагает так же и то, что при отсутствии активности клиентских устройств, контроллер больше не будет, посылая запросы на поиск необходимого для передачи трафика, расходовать лишнюю энергию. Также было снижено минимально возможное для работы напряжение с 4.4 В до 4.0 В. С другой стороны, с 500 мА до 900 мА был поднят порог максимально допустимого тока, пропускаемого шиной, что должно расширить круг поддерживаемой периферии и дать возможность определенным классам устройств отказаться от внешнего питания. В качестве бонуса можно ожидать и более быструю зарядку мобильных устройств, аккумуляторы которых получают энергию по USB.
Имеющиеся сегодня устройства, предназначенные для стандарта USB 2.0, будут без проблем функционировать с контроллерами для 3.0 и наоборот. Конечно, для достижения высоких скоростей передачи данных потребуется использование не только соответствующего контроллера, но и подходящего устройства вместе с удовлетворяющим спецификациям кабелем. Подключение же 2.0 устройства в порт 3.0, или 3.0 устройства в 2.0 порт, обеспечит стандартную для USB второго поколения производительность.
С самого начала разработки ставилась цель сохранения обратной совместимости интерфейса со своим предшественником, и потому сам разъем физически не претерпел серьезных изменений — форма и контакты, необходимые для USB 2.0, сохранены на старых местах. Новые, поддерживающие коннект на SuperSpeed скорости линии выведены так, чтобы соприкасаться с контактными площадками только при подключении по USB 3.0
Для того чтобы разнести контакты разных версий USB на безопасное расстояние, потребовалось несколько удлинить коннекторы и разъемы. Также из-за увеличившегося числа проводов толщина USB 3.0 кабеля будет сравнима с Ethernet шнуром.
USB 3.0 работает существенно быстрее 2.0. Конечно, обещанного десятикратного прироста обнаружить не удалось, но тут сама шина не виновата: нет пока устройств на практике способных покуситься на 100% пиковой пропускной способности в 5 Гбит/с. И не факт, что их появление в ближайшее время станет возможным. Однако наличие столь заметного запаса на будущее само по себе очень полезно и приятно — из него прямо проистекает то, что в ближайшие годы шина не устареет. Это тем более важно потому, что... в ближайшие годы ее массовое использование и не начнется.
USB обеспечивает обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Согласно спецификации USB, устройства (device) могут являться хабами, функциями или их комбинацией. Хаб (hub) только обеспечивает дополнительные точки подключения устройств к шине. Устройство-функция (function) USB предоставляет системе дополнительные функциональные возможности, например подключение к ISDN, цифровой джойстик, акустические колонки с цифровым интерфейсом и т. п. Комбинированное устройство (compound device), реализующее несколько функций, представляется как хаб с подключенными к нему несколькими устройствами. Устройство USB должно иметь интерфейс USB, обеспечивающий полную поддержку протокола USB, выполнение стандартных операций (конфигурирование и сброс) и предоставление информации, описывающей устройство. Работой всей системы USB управляет хост-контроллер (host controller), являющийся программно-аппаратной подсистемой хост-компьютера. Шина позволяет подключать, конфигурировать, использовать и отключать устройства во время работы хоста и самих устройств.
Шина USB является хост-центрической: единственным ведущим устройством, которое управляет обменом, является хост-компьютер, а все присоединенные к ней периферийные устройства — исключительно ведомые.
В отличие от громоздких дорогих шлейфов параллельных шин АТА и особенно шины SCSI с ее разнообразием разъемов и сложностью правил подключения, кабельное хозяйство USB простое и изящное. Кабель USB содержит одну экранированную витую пару с импедансом 90 Ом для сигнальных цепей и одну неэкранированную для подачи питания (+5 В), допустимая длина сегмента — до -5 м. Система кабелей и коннекторов USB не дает возможности ошибиться при подключении устройств. Для распознавания разъема USB на корпусе устройства ставится стандартное символическое обозначение.
Каждое устройство на шине USB (их может быть до 127) при подключении автоматически получает свой уникальный адрес. Логически устройство представляет собой набор независимых конечных точек (endpoint), с которыми хост-контроллер (и клиентское ПО) обменивается информацией.
Каждое устройство обязательно имеет конечную точку с номером 0, используемую для инициализации, общего управления и опроса его состояния.
Кроме нулевой точки устройства-функции могут иметь дополнительные точки, реализующие полезный обмен данными. Дополнительные точки не могут быть использованы до их конфигурирования (установления согласованного с ними канала).
Каналом (pipe) в USB называется модель передачи данных между хост-контроллером и конечной точкой устройства. Имеются два типа каналов: потоки и сообщения. Поток (stream) доставляет данные от одного конца канала к другому, он всегда однонаправленный. Сообщения (message) имеют формат, определенный спецификацией USB.
Каналы организуются при конфигурировании устройств USB. Для каждого включенного устройства существует канал сообщений (Control Pipe 0), по которому передается информация конфигурирования, управления и состояния.
Типы передач данных
Архитектура USB допускает четыре базовых типа передачи данных.
1 Управляющие посылки (control transfers) 1
2 Передачи массивов данных (bulk data transfers)
3 Прерывания (interrupt)
4 Изохронные передачи (isochronous transfers)
Архитектура USB предусматривает внутреннюю буферизацию всех устройств, причем чем большей полосы пропускания требует устройство, тем больше должен быть его буфер. USB должна обеспечивать обмен с такой скоростью, чтобы задержка данных в устройстве, вызванная буферизацией, не превышала нескольких миллисекунд.
Устройства и хабы
Хаб — кабельный концентратор — является ключевым элементом системы РnР в архитектуре USB. Хаб выполняет множество функций:
1 обеспечивает физическое подключение устройств, формируя и воспринимая сигналы в соответствии со спецификацией шины на каждом из своих портов;
5 обеспечивает связь сегментов шины, работающих на разных скоростях.
Устройства, подключенные к шине USB, могут пребывать в следующих состояниях:
3 Default — устройство подключено, питание подано и выполнен сброс, но уникальный адрес еще не назначен, и устройство отзывается по «дежурному» нулевому адресу;
4 Address — устройство подключено, питание подано, выполнен сброс и назначен уникальный адрес, но устройство еще не сконфигурировано;
5 Configured — устройство подключено, питание подано, выполнен сброс, назначен уникальный адрес и устройство сконфигурировано; хост может использовать функции, предоставляемые устройством; после конфигурирования (начального или смены конфигурации) все регистры, счетчики и т. п. программные и аппаратные элементы устанавливаются в исходное состояние;
6 Suspended — устройство подключено и питание подано, но приостановлено в целях энергосбережения (по отсутствию активности шины в течение определенного времени); устройство может уже иметь уникальный адрес и быть сконфигурированным, но хост не «может использовать функции, предоставляемые устройством (устройство выйдет из этого состояния, когда обнаружит активность шины).
Хост
У каждой шины USB должен быть один (и только один!) хост-компьютер с контроллером USB. Хост делится на три основных уровня.
1 Интерфейс шины USB
2 Система USB. Система состоит из трех основных частей.
А Драйвер хост-контроллера — HCD (Host Controller Driver) —
Б Драйвер USB — USBD (USB Driver)
В Программное обеспечение хоста
Информация о работе Внешние интерфейсы ПК (порты LPT, COM, шины SCSI, USB)