Вероятностный подход к измерению информации

Автор работы: Пользователь скрыл имя, 15 Апреля 2014 в 18:31, реферат

Краткое описание

Перед тем как рассматривать вероятностный подход к измерению информации, мы рассмотрим такие основные понятия, как информация и измерение информации
Информация — сведения о чём-либо, независимо от формы их представления.

Прикрепленные файлы: 1 файл

РЕФЕРАТ.docx

— 143.90 Кб (Скачать документ)

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:  
     1 Терабайт (Тб) = 1024 Гбайта = 240 байта,  
     1 Петабайт (Пб) = 1024 Тбайта = 250 байта.  
     Рассмотрим, как можно подсчитать количество информации в сообщении, используя содержательный подход. 
     Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных событий. Тогда количество информации х, заключенное в этом сообщении, и число событий N связаны формулой: 2x = N. Решение такого уравнения с неизвестной х имеет вид: x=log2N. То есть именно такое количество информации необходимо для устранения неопределенности из N равнозначных вариантов. Эта формула носит название формулы Хартли. Получена она в 1928 г. американским инженером Р. Хартли. Процесс получения информации он формулировал примерно так: если в заданном множестве, содержащем N равнозначных элементов, выделен некоторый элемент x, о котором известно лишь, что он принадлежит этому множеству, то, чтобы найти x, необходимо получить количество информации, равное log2N. 
     Если N равно целой степени двойки (2, 4, 8, 16 и т.д.), то вычисления легко произвести "в уме". В противном случае количество информации становится нецелой величиной, и для решения задачи придется воспользоваться таблицей логарифмов либо определять значение логарифма приблизительно (ближайшее целое число, большее ). 
     При вычислении двоичных логарифмов чисел от 1 до 64 по формуле x=log2N поможет следующая таблица.

N

x

N

x

N

x

N

x

1

0,00000

17

4,08746

33

5,04439

49

5,61471

2

1,00000

18

4,16993

34

5,08746

50

5,64386

3

1,58496

19

4,24793

35

5,12928

51

5,67243

4

2,00000

20

4,32193

36

5,16993

52

5,70044

5

2,32193

21

4,39232

37

5,20945

53

5,72792

6

2,58496

22

4,45943

38

5,24793

54

5,75489

7

2,80735

23

4,52356

39

5,28540

55

5,78136

8

3,00000

24

4,58496

40

5,32193

56

5,80735

9

3,16993

25

4,64386

41

5,35755

57

5,83289

10

3,32193

26

4,70044

42

5,39232

58

5,85798

11

3,45943

27

4,75489

43

5,42626

59

5,88264

12

3,58496

28

4,80735

44

5,45943

60

5,90689

13

3,70044

29

4,85798

45

5,49185

61

5,93074

14

3,80735

30

4,90689

46

5,52356

62

5,95420

15

3,90689

31

4,95420

47

5,55459

63

5,97728

16

4,00000

32

5,00000

48

5,58496

64

6,00000


 

При алфавитном подходе, если допустить, что все символы алфавита встречаются в тексте с одинаковой частотой (равновероятно), то количество информации, которое несет каждый символ (информационный вес одного символа), вычисляется по формуле: x=log2N, где N - мощность алфавита (полное количество символов, составляющих алфавит выбранного кодирования). В алфавите, который состоит из двух символов (двоичное кодирование), каждый символ несет 1 бит (21) информации; из четырех символов - каждый символ несет 2 бита информации(22); из восьми символов - 3 бита (23) и т.д. Один символ из алфавита мощностью 256 (28) несет в тексте 8 битов информации. Как мы уже выяснили, такое количество информации называется байт. Алфавит из 256 символов используется для представления текстов в компьютере. Один байт информации можно передать с помощью одного символа кодировки ASCII. Если весь текст состоит из K символов, то при алфавитном подходе размер содержащейся в нем информации I определяется по формуле:  , где x - информационный вес одного символа в используемом алфавите. 
     Например, книга содержит 100 страниц; на каждой странице - 35 строк, в каждой строке - 50 символов. Рассчитаем объем информации, содержащийся в книге.  
     Страница содержит 35 x 50 = 1750 байт информации. Объем всей информации в книге (в разных единицах):  
     1750 x 100 = 175000 байт.  
     175000 / 1024 = 170,8984 Кбайт.  
     170,8984 / 1024 = 0,166893 Мбайт.

2.3. Вероятностный подход к измерению  информации

Формулу для вычисления количества информации, учитывающую неодинаковую вероятность событий, предложил К. Шеннон в 1948 году. Количественная зависимость между вероятностью события р и количеством информации в сообщении о нем x выражается формулой: x=log2 (1/p). Качественную связь между вероятностью события и количеством информации в сообщении об этом событии можно выразить следующим образом - чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии.  
     Рассмотрим некоторую ситуацию. В коробке имеется 50 шаров. Из них 40 белых и 10 черных. Очевидно, вероятность того, что при вытаскивании "не глядя" попадется белый шар больше, чем вероятность попадания черного. Можно сделать заключение о вероятности события, которые интуитивно понятны. Проведем количественную оценку вероятности для каждой ситуации. Обозначим pч - вероятность попадания при вытаскивании черного шара, рб - вероятность попадания белого шара. Тогда: рч=10/50=0,2; рб40/50=0,8. Заметим, что вероятность попадания белого шара в 4 раза больше, чем черного. Делаем вывод: если N - это общее число возможных исходов какого-то процесса (вытаскивание шара), и из них интересующее нас событие (вытаскивание белого шара) может произойти K раз, то вероятность этого события равна K/N. Вероятность выражается в долях единицы. Вероятность достоверного события равна 1 (из 50 белых шаров вытащен белый шар). Вероятность невозможного события равна нулю (из 50 белых шаров вытащен черный шар). 
      Количественная зависимость между вероятностью события р и количеством информации в сообщении о нем x выражается формулой:  . В задаче о шарах количество информации в сообщении о попадании белого шара и черного шара получится:  . 
      Рассмотрим некоторый алфавит из m символов:   и вероятность выбора из этого алфавита какой-то i-й буквы для описания (кодирования) некоторого состояния объекта. Каждый такой выбор уменьшит степень неопределенности в сведениях об объекте и, следовательно, увеличит количество информации о нем. Для определения среднего значения количества информации, приходящейся в данном случае на один символ алфавита, применяется формула  . В случае равновероятных выборов p=1/m. Подставляя это значение в исходное равенство, мы получим

Рассмотрим следующий пример. Пусть при бросании несимметричной четырехгранной пирамидки вероятности выпадения граней будут следующими: p1=1/2, p2=1/4, p3=1/8, p4=1/8, тогда количество информации, получаемое после броска, можно рассчитать по формуле:

Для симметричной четырехгранной пирамидки количество информации будет: H=log24=2(бит). 
     Заметим, что для симметричной пирамидки количество информации оказалось больше, чем для несимметричной пирамидки. Максимальное значение количества информации достигается для равновероятных событий.

 

 


Информация о работе Вероятностный подход к измерению информации