Современные мониторы

Автор работы: Пользователь скрыл имя, 10 Марта 2014 в 10:27, реферат

Краткое описание

Монитор (дисплей) компьютера – это устройство, предназначенное для вывода на экран текстовой и графической информации.
Его можно смело назвать самой важной частью персонального компьютера (ну, пожалуй, сразу после системного блока). Почему он так важен? Все очень просто – кого может интересовать информация глубоко запрятанная в «железном ящике»? А если учесть, что 95% информации мы воспринимаем глазами, то можно смело утверждать, что изобретение монитора, после изобретения компьютера, было просто предопределено.

Прикрепленные файлы: 1 файл

Мониторы.doc

— 87.00 Кб (Скачать документ)

В силу особенностей технологии жидкокристаллические мониторы предназначены для показа изображения только в одном, так называемом «родном» разрешении, совпадающем с физическим количеством пикселей по горизонтали и вертикали. Выставление разрешения ниже, чем физическое, приводит к видимым искажениям и артефактам.

В настоящее насчитывается три основных соотношения сторон экрана монитора:

  • традиционное 4:3, только в моделях с диагональю 15", 20" и 21";
  • нестандартное соотношение сторон 5:4 – оно более приближено к квадрату, что несет определенные преимущества при работе с текстом – и неудобство при просмотре фильмов, подавляющее большинство которых выпускаются в широкоэкранном варианте;
  • стремительно набирающее популярность соотношение 16:10, или так называемые широкоэкранные (wide) мониторы – в силу особенностей физиологии, человеческий глаз более приспособлен к восприятию широкоэкранного изображения, нежели приближенного к квадратному. Однако старые программы и игры разрабатывались для соотношения сторон 4:3, без поддержки широкоэкранных мониторов.

3. Технологии будущего

3.1. Плазменные экранные матрицы (PDP)

Прообразом для создания плазменных экранных матриц (Plasma Display Panels) стали самые обычные лампы дневного освещения. Плазменные мониторы состоят из полой стеклянной панели, заполненной газом. На поверхность внутренней стороны стенок выведены микроскопические электроды, образующие две симметричные матрицы, а снаружи эта конструкция покрыта слоем люминофора. Когда на контакты подается ток, между ними возникает крошечный разряд, который заставляет светиться (в ультрафиолетовой части спектра) располагающиеся рядом молекулы газа. Следствием этого является освещение участка люминофора, как это происходит в обычных CRT-мониторах.

Основные плюсы этой технологии это: во-первых, плазменные мониторы выгодно отличаются от своих конкурентов высокой яркостью и контрастностью изображения; во-вторых, в их габаритах составляющая толщины представляет собой ничтожно малую долю. Основные минусы, не позволяющие использовать эту технологию для производства мониторов, это низкая разрешающая способность и крайне высокая энергоемкость. Кроме того, стоимость таких устройств является заоблачной для массового пользователя. Да и проблемы с цветопередачей для PDP также актуальны, как и для всех прочих решений, отличных от CRT.

3.2. Светоизлучающие пластики (LEP)

Иная альтернатива развития мониторов, не связанная с существующими наработками - технология изготовления и использования дисплеев на основе так называемых светоизлучающих пластиков.

Светоизлучающие пластики (Light Emission Plastics) - сложные полимеры с рядом интересных свойств. Вообще-то, использование пластических полимерных материалов в качестве полупроводников началось уже довольно давно, и встретить их можно в самых различных отраслях техники, в том числе и в бытовой электронике, включая персональные компьютеры. Однако некоторые представители этого семейства обладали и довольно необычным свойством - способностью эмитировать фотоны под воздействием электрического тока, то есть светиться.

Поначалу КПД полимерных светильников был крайне низким, и соотношение излучаемого света к затраченному потоку электронов измерялось долями процента. Но в последнее время компания Cambridge Display Technology существенно продвинулась в разработке светоизлучающего пластика и повысила эффективность этих материалов в сотни раз. Сейчас с уверенностью можно сказать, что LEP сравнились по своей функциональности с привычными светодиодами. Поэтому на повестку дня стал вопрос об их практическом применении.

LEP необычайно просты и дешевы в производстве. В принципе, LEP-дисплей представляет собой многослойный набор тончайших полимерных пленок. Даже по сравнению с экранами на жидких кристаллах пластиковые мониторы кажутся совсем тонкими - всего пары миллиметров вполне достаточно для воспроизводства на них качественного изображения. По многим же параметрам светоизлучающие пластики превосходят всех своих конкурентов. Они не подвержены инверсионным эффектам, что позволяет менять картинку на таком дисплее с очень высокой частотой. Для работы LEP расходуют электрический ток слабого напряжения, да и вообще отличаются низкой электроемкостью. Кроме того, то, что пластик сам излучает, а не использует отраженный или прямой поток от другого источника, позволяет забыть о тех проблемах, с которыми сталкиваются производители мониторов на жидких кристаллах, в частности - ограниченного угла обзора. Конечно, не обошли эту еще молодую технологию и свои специфические проблемы, такие, например, как ограниченный срок службы полимерных матриц, который сегодня намного меньше, чем у электронных трубок и жидкокристаллических дисплеев. Другая проблема касается воспроизведения светоизлучающим пластиком цветных изображений.

3.3. Технология OLED

Уже в самом названии OLED (Organic Light Emitting Diode) содержатся два кардинальных отличия от LCD технологии – «органический» и «светоизлучающий». Стоит поподробнее остановиться на каждом из этих двух пунктов, чтобы понять, почему эта технология столь интересна и почему именно она оказалась следующим этапом после LCD.

Начиная с 60-х годов, микроэлектроника основывается исключительно на неорганических материалах: кремний, германий, арсенид галлия, металлические проводники из алюминия или меди, различные диэлектрики (диоксида кремния). Но не прекращалась исследовательская работа по органическим материалам - полимерам и олигомерам, а также гибридным органическим-неорганическим соединениям. По всему спектру параметров: проводимость, полупроводниковые качества, светоизлучение, не говоря уже о том, что органика обладает рядом интересных качеств, вроде более мягких требований к температуре окружающей среды, зачастую выдающейся гибкостью, и т.д., что открывает перед производителями электронных устройств ряд совершенно новых применений.

Пионером в их исследовании стал Eastman Kodak, чьи ученые еще в 1987 году издали статью «Organic electroluminiscent diodes», описывающую новый класс тонкопленочных устройств на базе органических материалов, обладающих электролюминисцентными качествами, заметно превосходящими все, что было создано в этой области ранее.

Впервые предложенная Kodak схема с двумя слоями органики между электродами вместо одного и сегодня остается основным вариантом, используемым для создания OLED устройств. Вся эта система имеет толщину менее 500 нм, вместе с задней подсветкой, каковой она, помимо всего прочего, сама и является.

Новые OLED материалы представляют из себя куда более сложные комбинации веществ, чем это было на заре их истории. Новые химические формулы базовых слоев, отдельные обогащающие добавки, отвечающие каждая за свою часть спектра - красную, синюю, зеленую. Как в традиционных CRT экранах, OLED экран представляет из себя матрицу состоящую из комбинаций ячеек трех основных цветов - красного, синего, зеленого. В соответствии от того, какой цвет от него требуется - регулируется уровень напряжения на каждой из ячеек матрицы в результате чего смешением трех получившихся оттенков и получается требуемый результат.

Одновременно с распространением своего влияния на традиционные рынки где используются плоские экраны, OLED становится идеальным кандидатом для вновь появляющихся, особенно учитывая то, что компании ведущие разработки в области OLED экранов, заявляют о своей ориентации исключительно на гибкие пластиковые экраны. К примеру, электронная газета - лист пластика, не менее гибкого чем сегодняшний лист бумаги, со встроенной в него схемой беспроводного доступа к Internet, к последним выпускам разнообразных изданий, простая схема навигации, и конечно великолепное качество изображения, позволяющее оценить всю прелесть цветных фотоиллюстраций к статьям. Или обои, или скажем шторы. Ведь, если не зацикливаться на способности отображать четкую информацию с высокими разрешениями, то в случае подобного применения, OLED может стать новым нетрадиционным источником равномерного освещения для помещений, заменив собой лампы под потолком, причем с регулируемыми свойствами, от оттенка света, до конкретного узора на своей поверхности. В несколько более отдаленном будущем, когда технологии позволят достичь высоких разрешений и на OLED экранах с диагональю в несколько метров, такая стена сможет с легкостью превратиться при желании в телевизор или мультифункциональное информационное устройство.

 

Заключение.

Прогресс не остановить. Так же не останавливается развитие технологий производства мониторов. Новые модели пополняют полки магазинов с завидной регулярностью, рекламные брошюры, журналы посвященные ПК, постоянно призывают нас не пропустить очередную новинку. Цвета становятся все чище, разрешение все выше, энергопотребление падает, порой кажется, что мониторы в скором времени не только перестанут вредно воздействовать на человека, но и наоборот, займутся его оздоровлением. Меняются не только технологии, постоянно меняется и дизайн. Возможно, что мониторы перестанут совершенствовать только тогда, когда они смогут показывать жизнь как в реальности. Чем закончится это совершенствование? Возможно через несколько лет самая распрекрасная по качеству, но плоская, двухмерная картинка монитора покажется нам жутким анахронизмом. Наступит ли эра мониторов 3D, или изображение будет передаваться прямо на сетчатку глаза, никто не скажет определенно. Ну а пока эти, совсем непростые устройства, радуют нас тем, что за умеренную плату, в связке с ПК, они, мониторы, бесконечно расширяют наши возможности в плане  познания окружающего мира и его тайн.


Информация о работе Современные мониторы