Автор работы: Пользователь скрыл имя, 03 Ноября 2013 в 16:40, практическая работа
Цель работы: Ознакомиться с основными системами счисления, применяемыми для вычислений в компьютере. Научиться переводить числа из одной системы счисления в другую, выполнять арифметические операции сложения, вычитания.
Позиционными системами счисления называются системы счисления, в которых вклад каждой цифры в величину числа зависит от её положения (позиции) в последовательности цифр, изображающей число. Примером может служить десятичная система счисления, считать в которой учат в школе. Значение каждой цифры в числе зависит от ее местоположения. Сравните два числа: 50 и 500. В первом числе пять стоит в разряде десятков, во втором числе – в разряде сотен.
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №1.
СИСТЕМЫ СЧИСЛЕНИЯ. ОПЕРАЦИИ НАД ЧИСЛАМИ
В ПОЗИЦИОННЫХ СИСТЕМАХ СЧИСЛЕНИЯ.
1 Цель работы:
Ознакомиться с основными системами счисления, применяемыми для вычислений в компьютере. Научиться переводить числа из одной системы счисления в другую, выполнять арифметические операции сложения, вычитания.
2 Теоретическая часть.
2.1 Основные понятия.
Система счисления - это совокупность правил для обозначения и наименования чисел.
Системы счисления делят на две большие группы: непозиционные и позиционные.
Непозиционными системами счисления называются системы счисления, в которых каждой цифре соответствует величина, не зависящая от её места в записи числа. Примером непозиционной системы счисления может служить римская система счисления.
Таблица 1 – Римская система счисления
Римские цифры |
I |
V |
X |
L |
C |
D |
M |
Значение (обозначаемое количество) |
1 |
5 |
10 |
50 |
100 |
500 |
1000 |
Позиционными системами счисления называются системы счисления, в которых вклад каждой цифры в величину числа зависит от её положения (позиции) в последовательности цифр, изображающей число. Примером может служить десятичная система счисления, считать в которой учат в школе. Значение каждой цифры в числе зависит от ее местоположения. Сравните два числа: 50 и 500. В первом числе пять стоит в разряде десятков, во втором числе – в разряде сотен.
Основными достоинствами
любой позиционной системы
во-первых, ограниченное количество символов для записи чисел;
во-вторых, простота выполнения арифметических операций.
Основанием позиционной системы счисления (q) называют количество символов, используемое для записи числа.
Основание системы счисления показывает, во сколько раз изменится количественное значение цифры при перемещении ее на соседнюю позицию.
При записи числа основание системы счисления указывают в виде нижнего индекса: 5410, 10112, A1E16.
В компьютере используют двоичную, десятичную, восьмеричную и шестнадцатеричную системы счисления.
От того, какая система счисления будет использована в компьютере, зависят:
Двоичная система счисления используется для организации машинных операций по преобразованию информации:
q=2, алфавит: 0, 1.
Десятичная система счисления – для ввода и вывода информации:
q=10, алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Восьмеричная и
В восьмеричной системе счисления:
q=8, алфавит: 0, 1, 2, 3, 4, 5, 6, 7.
В шестнадцатеричной системе счисления:
q=16, алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
2.2 Правила перевода
чисел из одной системы
2.2.1 Перевод чисел
из десятичной системы
восьмеричную и шестнадцатеричную системы счисления.
Направление перевода |
Правила перевода |
Целые числа N2 N10 N8 N16 |
деление на 2 деление на 8 деление на 16 |
Дробные числа N2
N10 N8 N16 |
умножение на 2 умножение на 8 умножение на 16 |
Для перевода числа из десятичной системы счисления в двоичную (восьмеричную, шестнадцатеричную) системы счисления необходимо:
Целую часть числа разделить на основание системы счисления, в которую производится перевод (в двоичную – на 2, в восьмеричную – на 8, в шестнадцатеричную – на 16). Деление целочисленное, с остатком. Деление продолжить до тех пор, пока делимое не станет меньше делителя (2, 8, 16). Затем выписать остатки, начиная с последнего. Таким образом, получим целую часть числа в новой системе счисления.
Дробную часть числа умножаем
на основание системы счисления,
в которую производится перевод
(в двоичную – на 2, в восьмеричную
– на 8, в шестнадцатеричную –
на 16). Если при умножении получается
целое число, то в следующем действии
оно не учитывается, а умножается
дробная часть и т.д. Умножение
заканчивается тогда, когда дробная
часть равна 0. Если этого не происходит,
то умножение производить до третьего
знака после запятой. В дробную
часть переведенного числа
2.2.2 Перевод чисел
из двоичной, восьмеричной и
Для перевода числа из двоичной (восьмеричной, шестнадцатеричной) системы счисления в десятичную необходимо:
2.2.3 Перевод чисел
из двоичной системы счисления
в восьмеричную и
Для перевода числа из двоичной
системы счисления в
2.2.4 Перевод чисел
из восьмеричной и
В таблице 5 приведены правила перевода чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную системы счисления (Приложение 1).
Таблица 5 - Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную системы счисления
Направление перевода |
Правила перевода |
замена восьмеричных цифр триадами
замена шестнадцатеричных цифр тетрадами |
Поясним правила на примерах.
Для перевода числа из восьмеричной (шестнадцатеричной) системы счисления в двоичную систему счисления необходимо:
2.2.5 Перевод чисел
из восьмеричной системы
Для перевода числа из восьмеричной
системы счисления в
СИСТЕМЫ СЧИСЛЕНИЯ. ОПЕРАЦИИ НАД ЧИСЛАМИ
В ПОЗИЦИОННЫХ СИСТЕМАХ СЧИСЛЕНИЯ.
2.3 Арифметические
операции в позиционных
Арифметические операции в восьмеричной и шестнадцатеричной системе счисления сходны с аналогичными операциями в десятичной системе счисления.
Все операции производятся столбиком.
Необходимо помнить:
Если при сложении двух цифр в разряде получилось число большее восьми, то в старший разряд уходит 1, а в текущем разряде остается разность между полученным число и основанием системы – 8.
Если при вычитании двух цифр уменьшаемая цифра меньше вычитаемой, то занимаем в старшем разряде 1 (для текущего разряда это будет 8). 8 прибавляем к уменьшаемому и из полученной суммы отнимаем вычитаемое.
Выполните сложение
и вычитание чисел в
Необходимо помнить:
Если при сложении двух цифр в разряде получилось число большее шестнадцати, то в старший разряд уходит 1, а в текущем разряде остается разность между полученным число и основанием системы – 16.
Если при вычитании двух цифр уменьшаемая цифра меньше вычитаемой, то занимаем в старшем разряде 1 (для текущего разряда это будет 16). 16 прибавляем к уменьшаемому и из полученной суммы отнимаем вычитаемое.
Информация о работе Системы счисления. Операции над числами в позиционных системах счисления