Автор работы: Пользователь скрыл имя, 09 Сентября 2013 в 19:14, курсовая работа
Целью дипломного проекта является определение способа охлаждения ПК и подбор необходимого оборудования.
Для достижения поставленных целей и задач необходимо выполнить следующие этапы работы:
подбор литературы и изучение материалов по данной тематике;
виды охлаждений;
Определение необходимого оборудования;
обзор оборудования;
рассмотрение устройства и его характеристик;
модернизация серверного огборудования;
определение устройства;
Теоретическая значимость состоит в анализе существующих технологий и применений одной из них для реализации на практике;
Практическая значимость состоит в анализе реализованного на практике проекта;
Введение 3
1. Охлаждение, виды охлаждения 4
1.1 Активное охлаждение 5
1.2 Водяное охлаждение 7
1.3 Криогенное охлаждение 7
1.4 Нитрогенное охлаждение 8
1.5 Элемент Пельтье 9
2. Двигатель и терморегулятор. 10
2.1 Устройство термоконтроля 14
3. Устройство вентилятора 19
3.1 Характеристики вентиляторов 19
3.2 Виды вентиляторов 22
3.3 Рабочая характеристика вентилятора 24
3.4 Параллельное и последовательное включение вентиляторов 25
4. Выбор кулера 27
Вывод
1.3 Криогенное охлаждение. СО, которая охлаждает чип при помощи специального газа - фреона. Состоит она из компрессора, конденсатора, фильтра, капилляра, испарителя и втягивающей трубки. Работает следующим образом: газообразный фреон поступает в компрессор и там нагнетается. Далее газ по давлением попадает в конденсатор, где превращается в жидкость и выделяет энергию в тепловом виде. Эта энергия рассеивается конденсатором в окружающую среду. Далее фреон, уже будучи жидкостью, перетекает в фильтр, где очищается от случайного мусора, который может попасть в капилляр и, закупорив его, вывести систему охлаждения из строя. По капилляру жидкий фреон попадает в испаритель, где под действием передаваемого от испарителя тепла начинает кипеть, активно поглощая получаемую от процессора тепловую энергию, и по всасывающей трубке попадает обратно в компрессор и цикл повторяется.
Рисунок 1.4 - Криогенное охлаждение
Не распространена
в силу своей дороговизны и
необходимости пополнения фреона, так
как он со временем улетучивается
и его приходится добавлять с
систему охлаждения. Также эффективна
при разгоне, так как способна
создавать минусовые
1.4. Нитрогенное охлаждение. Вся система охлаждения состоит из средних размеров емкости с залитым туда жидким азотом. Ничего и никуда не надо не подводить, не отводить. При нагревании процессором жидкий азот испаряется, и, достигая "потолка" емкости, становится жидким и вновь попадает на дно и снова испаряется. Нитрогенное охлаждение, также как и фреонное, способно обеспечить минусовую температуру (приблизительно - 196оС). Неудобство в том, что жидкий азот, также, как и фреон, имеет способность выкипать, и приходится добавлять его в немалых количествах. Кроме того, азотное охлаждение весьма дорого.
Рисунок 1.5 - Нитрогенное охлаждение
Принцип действие элемента Пельтье основан на работе полупроводников p - и n-типа.
Рисунок 1.6 - Элемент Пельтье
1.5. Элемент Пельтье. Еще одно устройство охлаждения, состоящее из двух полупроводниковых пластин. При пропускании через них электрического тока одна пластина начинает морозить, а другая, наоборот, излучать тепло. Причем температурный промежуток между температурами двух пластин всегда одинаков. Используется элемент Пельтье следующим образом: "морозящая" сторона крепиться на процессор. Опасность его использования связана с тем, что при неправильной установке элемента есть вероятность образования конденсата, что повлечет за собой выход оборудования из строя. Так что при использовании элемента Пельтье следует быть чрезвычайно аккуратным.
При исследовании СО приходим к выводу, что для нашего случая наиболее приемлемый вариант - воздушное охлаждение. Остается выбрать приемлемый вариант вентилятора (малый уровень шума и побольше производительность).
2. Двигатель и терморегулятор.
Этот статья посвящена такой немаловажной части современного компьютера, как кулер (двигатель-вентилятор, если быть точным). От него зависит охлаждение системы, а значит нормальная работа компьютера.
Большинство вентиляторов выполнены в виде бесколлекторных двигателей с внешним ротором, снабженным крыльчаткой. Напряжение питания обычно 12 Вольт, потребляемый ток, в зависимости от размеров и мощности, от 70 мА до 0,35 А (у наиболее мощных). Коллекторные двигатели не применяют, так как их щетки довольно быстро изнашиваются и создают сильные шумы и вибрации, а также электрические помехи.
На роторе бесколлекторного
двигателя установлены
Рисунок 1. схема
двигателя SU8025-M.
На рисунке 1 приведена схема двигателя SU8025-M. На статоре двигателя расположены четыре идентичные катушки, содержащие по 190 витков. Намотаны они сложенным вдвое проводом. В зависимости от углового положения датчика Холла относительно ротора, на выходе датчика будет низкий или высокий уровень напряжения.
Если уровень
высокий, то открыт транзистор VT1, VT2 закрыт,
и через обмотки группы А протекает
ток. Ротор поворачивается, вместе
с ним поворачивается и его магнитное
поле. Когда уровень сигнала на выходе
ВН1 сменится низким, VT1 закроется, а VT2
откроется, пропуская ток в группу обмоток
Б. Ротор вращается дальше, ток снова переключается
в обмотки группы А, и процесс повторяется
снова и снова.
В моменты переключения тока на обмотках двигателя возникают выбросы напряжения (благодаря явлению самоиндукции). Для уменьшения этих выбросов параллельно участкам коллектор-эмиттер транзисторов VT1 и VT2 подключены конденсаторы С1 и С2. Диод на входе защищает остальную схему от повреждений в случае неправильного подключения питания.
Есть и другие варианты схем вентиляторов.
В процессе эксплуатации, возможно высыхание смазки, что приводит к повреждению поверхности оси ротора и втулки, а это в свою очередь приводит к усилению вибрации или даже заклиниванию ротора. Так что, если появился гул, который исчезает после нескольких минут работы, - это характерный признак того, что в подшипниках нет смазки. Еще одной проблемой является загустевание смазки, по причине низкого качества или попадание пыли, что является прекрасным тормозом для ротора. Для устранения необходима разборка и смазка.
Другой тип неисправностей - электрические. Как и в любом другом устройстве, неисправности эти бывают двух видов - "нет контакта, где должен быть, или он есть там, где его не должно быть" - обрыв или замыкание. У обмоток статора малое "омическое" сопротивление, поэтому при пробое коммутирующего транзистора или остановке крыльчатки (попадание туда чего-либо или заклинивание подшипника) ток в обмотке значительно возрастает, а это может привести к перегоранию проводов.
Для ограничения тока в случае возможной аварии последовательно в цепь питания вентилятора необходимо включить резистор сопротивлением 10 Ом. Если возникло желание (просто непреодолимое) перемотать сгоревшие обмотки, следует использовать провода марок ПЭВ-2, ПЭТВ-2, ПЭЛБО, ПЭЛШО подходящего диаметра. Точно соблюдайте число витков, иначе новые обмотки будут перегреваться.
Вышедшие из строя транзисторы лучше заменять более высоковольтными, подходящими по параметрам (ну и по размерам тоже...), если сможете такие найти. Скорее всего, придется искать другой сгоревший вентилятор для разборки.
Если установленные в двигателе конденсаторы рассчитаны на напряжение меньше 50 Вольт, их рекомендуют заменять более высоковольтными. Хотя рассмотреть на мелких деталях маркировку бывает и затруднительно.
Ремонт платы,
вероятно, будет затруднен из-за
ее малых габаритов и особенностей
поверхностного монтажа. Обратите внимание на качество
пайки - при работе двигатель довольно
сильно вибрирует, и иногда детали просто
отваливаются.
После окончания ремонта и установки кулера
на место проверьте, не мешают ли его вращению
шлейфы и провода, иначе придется повторять
процедуру ремонта снова.
Сигнализатор вращения кулера.
Итак, двигатель вертится, и все вроде в норме. Хорошо, если плата способна контролировать обороты вентиляторов, но ведь у многих еще работают "раритеты", которые и не подозревают о существовании кулеров с датчиками оборотов. Что можно предпринять в этом случае?
Можно попробовать приобрести устройство, описанное в одном из номеров "UPGRADE", - называется оно просто и незатейливо: TTC-ALC Fan Alarm. К этому устройству подключаются до трех вентиляторов, и при остановке любого из них раздается звуковой сигнал. Сигнал будет звучать до тех пор, пока не начнет вращаться вентилятор или не отключится питание. Только вот на снижение оборотов (без полной остановки вентилятора) эта штука не реагирует... Указанная стоимость "сторожа" составляла 11 долларов.
А почему бы не попробовать сделать такого "Большого Брата" для кулера самому? Вот и схема для заинтересовавшихся - рис. 2.
Схема предназначена для контроля оборотов двигателя с датчиком вращения. Выход датчика - транзистор с "открытым коллектором", при работе этот транзистор открывается и закрывается (два импульса на каждый оборот ротора). База транзистора VT1 будет периодически соединяться с общим проводом, и транзистор будет закрыт. При снижении оборотов "замыкание" базы VT1 на корпус будет происходить все реже, и напряжение на С1 начнет увеличиваться (ведь он заряжается через R1).
Как только напряжение станет достаточным для открытия транзистора, засветится индикатор HL1 и заработает мультивибратор на транзисторах VT2 и VT3. Если вентилятор все еще пытается вращаться, то сигналы принимают вид коротких звуковых и световых импульсов.
При полной остановке ротора сигнал становится непрерывным. Недостаток данной схемы выяснился в процессе опытной проверки - если ротор полностью останавливается в определенном положении относительно статора, тревожный сигнал не подается, хотя на уменьшение оборотов схема реагирует нормально. (Возможно, просто вентилятор такой неудачный попался...)
Еще одна схема, которая рассчитана на подключение к двигателю без тахометрического датчика. Реагирует она и на замедление вращения ротора, и на полную его остановку (рис.3).
Последовательно с двигателем включен
резистор R1, который ограничивает ток,
подающийся на двигатель в аварийных
ситуациях. В процессе работы прохождение
тока через обмотки носит импульсный
характер, соответственно, на R1 будут
появляться импульсы напряжения. При токе через резистор,
примерно равном 130 мА, падение напряжения
на нем составит чуть больше 1 Вольта (в
полном соответствии с законом Ома). Импульсы
поступают на базу VT1, который выполняет
роль "усилителя". С его коллектора
через конденсатор С1 эти импульсы управляют
транзистором VT2, который периодически
открывается этими импульсами и разряжает
конденсатор С2.
Напряжение на С2 недостаточно для открывания VT3, сигнализация молчит. При замедлении вращения ротора двигателя импульсы поступают все реже, и когда напряжение на С2 достигнет величины, достаточной для открывания транзистора VT3, загорится светодиод и зазвучит тональный сигнал. Мультивибратор - такой же, как и в предыдущей схеме. Схема, возможно, далека от оптимальной, но работает вполне надежно.
В "вопросах по железу" встретился вопрос о программе, которая бы отрубала всю деятельность процессора по превышению определенной температуры, например, при остановке кулера. Программ, которые бы отрубали процессор, вроде пока не было (если не считать команды на окончание работы и отключение).
Программы, контролирующие обороты кулеров и напряжение на плате, есть, но они работают с современными платами. А что делать остальным? Ответ такой - собрать и опробовать схему, описанную выше, и ввести туда диод, цепь которого показана штриховыми линиями. Возможно, придется увеличить емкость конденсатора С2, чтобы сброс происходил при очень малых оборотах вентилятора, недостаточных для нормального охлаждения процессора. Работать схема будет так же, как и раньше, но вдобавок при остановке кулера кроме срабатывания сигнализации будет происходить непрерывный "сброс". Световая сигнализация в данном случае просто необходима, чтобы сразу установить причину тревоги.
Еще один вариант такой схемы (рис.4), работает аналогично предидущей схеме. Индикация осуществляется светодиодом "Power", который обычно подключается к хорошо знакомому разъему "Power led" на материнской плате. Логика работы проста: если светодиод горит - все нормально, если нет - пора извлекать кулер для "профилактики".
В схемах применимы
транзисторы, подобные по параметрам обычным
КТ315, КТ361 с граничным рабочим
напряжением коллектор-эмиттер
Желательно будет подписать, какой индикатор к какому вентилятору относится. Величину ограничительного резистора R1 необходимо уточнить - главное, чтобы при работе в нормальном режиме напряжение на нем было чуть более 1 Вольта.
Некоторые пользователи
хотят разогнать в своем
Информация о работе Система охлаждения персонального компьютера