Сетевой режим автоматизированной обработки информации

Автор работы: Пользователь скрыл имя, 12 Октября 2014 в 01:30, контрольная работа

Краткое описание

Под автоматизированной информационной системой понимается организационно-техническая система, использующая автоматизированные информационные технологии в целях обучения, информационно-аналитического обеспечения научно-инженерных работ и процессов управления (computer-aided information system). Основными компонентами автоматизированной информационной системы являются вычислительная техника, программное обеспечение и персонал. Информационная технология также является неотъемлемой частью автоматизированной информационной системы. Под информационной технологией понимают процесс преобразования данных или исходной информации в информационный продукт.

Содержание

Введение
Сетевой режим автоматизированной обработки информации

Сеть. Характеристика сетей.
2.1. Физическая шинная топология
2.2. Звездообразная физическая топология
2.3. Распределенная физическая звездообразная топология
2.4. Физическая кольцевая топология
3..Классификация сетевых технологий.
3.1. Локальная сеть
3.2. Территориальная (региональная сеть).
3.3. Глобальные сети.
Заключение
Список используемой литературы

Прикрепленные файлы: 1 файл

Готова на печать сетевой режим.docx

— 43.92 Кб (Скачать документ)

Содержание

Введение

    1. Сетевой режим автоматизированной обработки информации

 

    1. Сеть. Характеристика сетей.

 2.1. Физическая шинная топология

    2.2. Звездообразная физическая  топология

          2.3. Распределенная  физическая звездообразная топология

          2.4. Физическая  кольцевая топология

3..Классификация сетевых технологий.

        3.1. Локальная сеть 

       3.2. Территориальная (региональная сеть).

       3.3. Глобальные сети.

Заключение

Список используемой литературы

 

 

 

 

 

 

 

 

 

 

Введение

Под  автоматизированной информационной системой понимается организационно-техническая система, использующая автоматизированные информационные технологии в целях обучения, информационно-аналитического обеспечения научно-инженерных работ и процессов управления (computer-aided information system). Основными компонентами автоматизированной информационной системы являются вычислительная техника, программное обеспечение и персонал. Информационная технология также является неотъемлемой частью автоматизированной информационной системы. Под информационной технологией понимают процесс преобразования данных или исходной информации в информационный продукт. Для выполнения таких преобразований автоматизированная информационная технология должна содержать необходимые инструменты: технические средства (средства вычислительной техники и телекоммуникационных систем) и программные средства, объединяющие в себе базовое и прикладное программное обеспечение. В настоящее время наиболее популярны у пользователей, а значит — наиболее применимы, следующие виды автоматизированных информационных технологий: информационная технология обработки данных, основными компонентами которой являются база данных, СУБД, которая предназначена для решения хорошо структурированных задач; информационная технология управления, основными компонентами которой также являются базы данных, на их основе технология формирует для руководителей всех уровней различные отчёты, помогающие принятию управленческого решения, анализу хозяйственной деятельности; информационная технология автоматизации офиса — представляет набор технических и программных средств, повышающих эффективность документооборота любой организации, делает возможным создание в ней электронного офиса; информационная технология поддержки принятия решения - представляет сплав экономико - математических методов и моделей, а также прикладных программ, ориентированных на решение плохо формализованных задач, основными компонентами которой являются база данных и база моделей различных ситуаций, помогает пользователю вырабатывать управленческое решение; информационная технология экспертных систем - представляет технические и программные средства,основанные на знаниях, полученных от специалистов в конкретной (довольно узкой) предметной области, решает те же проблемы, экспертами в которых являются специалисты, предоставившие знания, применяется также для поддержки процесса принятия решения. Принятие решения в автоматизированной системе организационного управления осуществляется специалистом с применением или без применения технических средств, но в последнем случае на основе тщательного анализа результатной информации, полученной на ПЭВМ. Задача принятия решений осложняется тем, что специалисту приходится искать из множества допустимых решений наиболее приемлемое, сводящее к минимуму потери ресурсов (временных, трудовых, материальных и т.д.). Благодаря применению персональных ЭВМ и терминальных устройств повышается аналитичность обрабатываемых сведений, а также обеспечивается постепенный переход к автоматизации выработки оптимальных решений в процессе диалога пользователя с вычислительной системой. Этому способствует использование новых технологий экспертных систем поддержки принятия решений. Обработка информации производится на ПЭВМ, как правило, децентрализованно, в местах возникновения первичной информации, где организуются автоматизированные рабочие места специалистов той или иной управленческой службы (отдела материально-технического снабжения и сбыта, отдела главного технолога, конструкторского отдела, бухгалтерии, планового отдела и т.п.). Обработка может производиться не только автономно, но и в вычислительных сетях, с использованием набора ПЭВМ программных средств и информационных массивов для решения функциональных задач. В ходе решения задач на ЭВМ в соответствии с машинной программой формируются результатные сводки, которые печатаются машиной на бумаге или отображаются на экране. Печать сводок может сопровождаться процедурой тиражирования, если документ с результатной информацией необходимо предоставить нескольким пользователям.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Сетевой режим автоматизированной  обработки информации

 

    1. Сеть

Сеть - это совокупность программных, технических и коммуникационных средств, обеспечивающих эффективное распределение вычислительных ресурсов.

Сеть позволяет:

- построить распределенные  хранилища информации (базы 
данных);

- расширить перечень решаемых  задач по обработке информации;

- повысить надежность  информационной системы за счет  дублирования работы ПК;

- создать новые виды  сервисного обслуживания, например 
электронную почту;

- снизить стоимость обработки  информации.

Характеристики сетей:

- открытость. Заключается  в обеспечении возможности подключения в контур сети любых типов современных ПК;

- ресурсы. Значимость и  ценность сети должны определяться  набором хранимых в ней знаний, данных и способностью технических средств оперативно их представлять либо обрабатывать;

- надежность. Трактуется  как обеспечение высокого показателя  «наработки на отказ» за счет  оперативных сообщений об аварийном режиме, тестирования, программно-логического контроля и дублирования техники;

- динамичность. Заключается  в минимизации времени отклика  сети на запрос пользователя;

- интерфейс. Предполагается, что сеть обеспечивает широкий  набор сервисных функций по  обслуживанию пользователя и  предоставлению ему запрашиваемых информационных ресурсов;

- автономность. Понимается  как возможность независимой  работы сетей различных уровней;

- коммуникации. К ним предъявляются  особые требования, связанные с обеспечением четкого взаимодействия ПК по любой принятой пользователем конфигурации сети. Сеть обеспечивает защиту данных от несанкционированного доступа, автоматическое восстановление работоспособности при аварийных сбоях, высокую достоверность передаваемой информации и вычислительных процедур. Важнейшей характеристикой сети является топология, определяемая структурой соединения ПК в сети. Различают два вида топологии — физическая и логическая. Под физической топологией понимается реальная схема соединения узлов сети каналами связи, а под логической — структура маршрутов потоков данных между узлами.

2.1. Физическая шинная топология

Для простых сетей, расположенных в пределах небольшой территории, физическая шинная топология (известная в мире компьютеров Mac как "цепочка") может оказаться наилучшим решением. В топологии шины кабель идет от компьютера к компьютеру, связывая их в цепочке. Все компьютеры в сети связаны одним общим кабелем, как правило, коаксиальным. В сети с кабелем типа "витая пара" может использоваться физическая шинная топология. При этом можно подключать дополнительные компьютеры соедини тельным кабелем, но на самом деле это способ непрактичен при соединении в одну сеть трех и более компьютеров. Можно подключаться к сети с шинной топологией двумя способами в зависимости от используемого кабеля. Если в сети используется толстый коаксиальный кабель, то такая сеть с шинной топологией имеет центральную магистраль, реализованную с помощью толстого коаксиального кабеля. К каждому компьютеру сети от магистрали подходят маленькие, более тонкие (и более гибкие) кабели, называемые отводами. Для физического подключения тонких кабелей к толстому магистральному кабелю используют небольшие устройства - трансиверы. Конфигурация "толстой" сети Ethernet обычно используется при объединении мэйнфреймов и миникомпьютеров (рис. 1), но популярность таких сетей падает по мере того, как персональные компьютеры становятся более мощными и соответственно сети, базирующиеся на мэйнфреймах, -- менее распространенными. Для новых сетей, использующих физическую шинную топологию, удобнее применять тонкий коаксиальный кабель. В противоположность "толстой" Ethernet, в "тонкой" сети (Thinnet) избегают использования магистрали, а подключение всех сетевых устройств выполняется напрямую. Вместо толстого кабеля, для тонкой сети используют более гибкий коаксиальный. Такая разновидность физической шинной топологии сегодня более популярна, чем её "толстый" двойник, в котором применяют отводы и трансиверы. Суть дела в упрощении работы - с толстым кабелем в "толстой" Ethernet тяжело работать, поскольку он очень жесткий. При физической шинной топологии в «тонкой» сети персональные компьютеры могут подключаться к магистрали и напрямую

Наибольшая проблема, которая может возникнуть при работе с сетью шинной топологии, заключается в неправильном согласовании. В этом случае сеть не может корректно выполнять передачу данных. Используя физическую шинную топологию, следует любым способом избегать нарушения целостности кабеля на всем его протяжении. Такие нарушения могут возникнуть из-за неправильной работы узлов и разрывов кабеля. Сеть не сможет корректно передавать данные, даже если всего один узел работает неправильно, поскольку системе в целом необходимо, чтобы каждый узел был в рабочем состоянии, обеспечивая прохождение данных. Это вовсе не означает, что для корректной работы сети все компьютеры в сети должны быть включены и зарегистрированы. Имеется существенное отличие между неправильно работающим (например, по причине неполной стыковки разъемов кабельного соединения) и выключенным узлом. Если узел выключен, данные к следующему активному узлу проходят через Т-разъем, подключенный к сетевой плате. В этом случае сеть не будет "знать", что в ней имеется неактивный узел. Однако если узел активный, но работает неправильно, то, безусловно, возникнет проблема. Активный узел, как и ранее, пытается обработать пакет, но делает это с ошибками, что замедляет работу всей сети или приводит к ее внезапной остановке. Разрывы кабеля также вызывают появление проблем в сети с шинной топологией, поскольку корректная работа сети зависит от правильного функционирования кабеля на всем протяжении между его согласованными концами. Если в какой-либо точке кабель разрушен, сеть не сможет работать, и потребуется немало времени для определения места разрыва и замены поврежденного сегмента кабеля. При этом может потребоваться проверка каждого разъема, для того чтобы удостовериться, что он надежно установлен, что никто не пытался перезагрузиться или выйти из системы во время прохождения сигнала, и во многом другом. Шинная топология имеет одно преимущество -- это высокая эффективность кабельной системы, помогающая сэкономить деньги при создании наиболее дорогой части сети. Однако она может оказаться сложной для реализации, если сетевые компьютеры не расположены в строгом линейном порядке. Например, сеть, узлы которой распределены по всему зданию - неудачный кандидат на реализацию шинной топологии -- и, вероятно, eel будет легче обслуживать, если реализовать сеть на основе топологии звезды.

2.2. Звездообразная физическая топология

В сети, построенной по звездообразной топологии, каждый сервер и рабочая станция подключаются к центральному концентратору, который обеспечивает связь между ними, поэтому сеть, в которой используется звездообразная топология. В сети, построенной по звездообразной топологии, все ресурсы подключаются к центральному устройству

В первых сетях для передачи данных использовалась звездообразная топология для подключения неинтеллектуальных терминалов к мэйнфреймам. Почему же эта топология повсеместно используется и до сих пор? Вероятно, потому, что при ее использовании существенно легче работать в сети. Каждая рабочая станция и сервер имеют отдельное соединение с центральной коммутационной станцией. Это значит, что каждое соединение работает независимо. Обрыв кабеля, идущего к рабочей станции А, не окажет воздействия на рабочую станцию В. Это также означает, что для такой сети относительно легко создать кабельную систему, поскольку можно не тревожиться о том, как расположены относительно друг друга компьютеры в сети. Пока длина отрезка кабеля от каждой рабочей станции или сервера до центральной коммутационной станции не превышает максимально допустимого значения, никаких проблем не возникает. Центральной частью сети, построенной по звездообразной топологии, является концентратор. Концентраторы могут быть разными, но их суть проста: это устройства, реализующие центральный узел для всех сетевых кабелей, обеспечивая тем самым связь между портами, что позволяет компьютерам подключаться к нему для обмена сообщениями. Еще одним важным преимуществом такой сети является то, что в ней легко диагностировать неисправности. Как было ранее описано в разделе "Физическая шинная топология", при возникновении сбоя в сети с шинной топологией может оказаться очень непросто точно определить, в чем заключается проблема, если, конечно, не просматривать все узлы подряд. В сети, построенной по звездообразной топологии, найти ее источник очень легко. Если некий узел не работает, то проблему, очевидно, следует искать где-то между портом концентратора и физически подключенным к нему узлом.

Следует проверить, что является источником нарушения работоспособности:

· терминал;

· кабель между концентратором и терминалом;

· порт концентратора, обслуживающий терминал, вызывающий беспокойство.

Если ни один из узлов сети не обеспечивает качественное соединение сервера и концентратора (неплохо держать один концентратор про запас, если это возможно), то проблема, вероятно, заключается в сервере. Если это так, то самое время уповать на то, что вы запланировали сделать для отказоустойчивой работы системы и на то, что вы сделали резервные копии файлов.

Звездообразная топология также хорошо подходит и для физически распределенных сетей. Представьте себе сеть с четырьмя компьютерами - три рабочих станции и один сервер. Если одна станция находится на этаже сверху, а две - на этаже снизу, да еще и в отдельных комнатах, то значительно проще проложить отдельный сетевой кабель к каждому компьютеру, не беспокоясь о связях всех узлов друг с другом, а затем подключить все кабели к концентратору. Конечно, звездообразная топология имеет один серьезный недостаток: в ней используется много кабеля. К каждому элементу сети требуется проложить свой собственный кабель. Наличие центрального концентратора и в самом деле не является наиболее эффективным методом организации кабельной системы, поэтому если вы заинтересованы в снижении стоимости сети, а узлы расположены рядом друг с другом, вы, вероятно, предпочтёте шинную топологию.

2.3. Распределенная физическая звездообразная топология

Для больших сетей одного концентратора может оказаться недостаточно. Возможно, у него будет маловато портов для поддержки всех компьютеров сети или компьютеры слишком далеко отстоят от концентратора, или одновременно и то, и другое. Для подключения всех устройств к сети может потребоваться несколько концентраторов, но идея создания в одном здании трех или четырех отдельных сетей может показаться не очень привлекательной. Как же решить проблему? Это случай, для которого может пригодиться одна из разновидностей физической звездообразной топологии: связанная звезда (connected star) или распределенная звезда (distributed star). Здесь концентраторы сети последовательно подключены друг к другу, так что все они могут обмениваться информацией (рис. 4). Такая организация сети имеет некоторые недостатки, свойственные сети, построенной по шинной топологии: разрыв кабеля между двумя концентраторами изолирует части сети по обеим сторонам разрыва. Однако этот недостаток компенсируется тем, что при отсутствии шины концентраторы были бы изолированы друг от друга в любом случае.

2.4. Физическая кольцевая топология

Наконец, рассмотрим физическую топологию, с которой вам вряд ли придётся столкнуться на практике, но, тем не менее, заслуживающую упоминания. Это сеть, построенная по физической кольцевой топологии, в которой все персональные компьютеры сети для обеспечения целостности сети соединены в кольцо, выполненное в виде пары кабелей, проложенных между каждым узлом. Такая система вполне работоспособна, но её стоимость и трудоёмкость прокладки кабельной системы весьма велики, поскольку и такой сети затраты на кабель удваиваются.

Такую сеть иногда применяют для глобальных оптоволоконных сетей, поскольку это неплохой способ предоставить множеству узлов в региональной области доступ к оптоволоконной сети. Однако автору известна только одна локальная сеть, использующая физическую топологию кольца - старая система автоматизированного офиса фирмы IBM, называемая 8100. Исключением из этого правила является технология оптоволоконных каналов (см. раздел "Скоростные сети Fast Ethernet и Gigabit Ethernet" далее в этой главе), в которой может использоваться физическая кольцевая структура для создания средств физического уровня, реализующих высокоскоростную линию связи между узлами сети и другой аппаратурой. Из-за высокой стоимости оптоволоконных линий связи, вы вряд ли встретитесь с ними на практике, но реально они существуют.

Информация о работе Сетевой режим автоматизированной обработки информации