Сельскохозяйственное производство как объект компьютеризации. Программные средства для решения задач, перспективы компьютеризации

Автор работы: Пользователь скрыл имя, 20 Сентября 2014 в 14:47, контрольная работа

Краткое описание

Анализ научного обеспечения АПК показал, что из общего числа завершенных, принятых, оплаченных заказчиком и рекомендованных к внедрению прикладных научно-технических разработок всего 2-3% было реализовано в ограниченных объемах, 4-5% - в одном-двух хозяйствах, а судьба 60-70% разработок через 2-3 года была неизвестна ни заказчиком, ни разработчиком, ни потребителям научно-технической продукции [3, с. 51].

Содержание

Теоретическая часть
5. Сельскохозяйственное производство как объект компьютеризации. Программные средства для решения задач, перспективы компьютеризации………………………………………………………………………3
11. Внешняя память компьютера. 6
21. Системы управления базами данных (СУБД) и их применение. 7
Практические задания
Задача №1. 12
Задача №2. 13
Список литературы 17

Прикрепленные файлы: 1 файл

Контрольная информатика Сельхоз вар. 0.doc

— 250.00 Кб (Скачать документ)

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

РОССИЙСКОЙ ФЕДЕРАЦИИ

 

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОЦЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

 

 

Контрольная работа по информатике

Вариант № 0

 

 

 

Выполнил(-а):

Студентк(-а) Х-го курса группы Х

 

Проверил(-а):

 

 

 

 

 

 

Барнаул,  2014

 

Содержание

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Теория

5. Сельскохозяйственное производство как объект компьютеризации. Программные средства для решения задач, перспективы компьютеризации

История развития сельского хозяйства непосредственно связана с совершенствованием средств производства [3, с. 51].

На этапе современного развития сельского хозяйства мы можем наблюдать демонстрацию непрерывный рост и развитие производства с использованием надежной и эффективной техники.

Современный уровень сельскохозяйственного производства в большинстве развитых стран определяется деятельностью мировых лидирующих фирм и концернов — изготовителей специальной техники.

Анализ научного обеспечения АПК показал, что из общего числа завершенных, принятых, оплаченных заказчиком и рекомендованных к внедрению прикладных научно-технических разработок всего 2-3% было реализовано в ограниченных объемах, 4-5% - в одном-двух хозяйствах, а судьба 60-70% разработок через 2-3 года была неизвестна ни заказчиком, ни разработчиком, ни потребителям научно-технической продукции [3, с. 51].

Создавшееся положение является следствием значительного ухудшения финансового состояния организаций АПК.

Последние годы ознаменовались резким сокращением выделения средств на научные прикладные исследования.

В то же время в 18 развитых странах мира за последние три десятилетия они увеличились от 0,96 до 2,2 % ВВП, приходящегося на с./х-во, в том числе в США от 1,32 до 2,2 %. А в Австралии затраты на аграрные исследования за указанный период в отрасли от 1,5 до 4,42 %, в ЮАР от 1,39 до 2,59 %, а в 17 африканских странах - от 0,42 до 0,58 % ВВП, приходящегося на сельское хозяйство [3, с. 51].

Получается, что весь мир увеличивает затраты на аграрные исследования, а в нашей стране они сокращаются. Как объяснить создавшееся положение? Как заставить работать накопленный десятилетиями мощный научно-технический потенциал в АПК?

Слабым звеном в формировании эффективного инновационного развития АПК является изучение спроса на инновации.

Маркетинг не стал еще неотъемлемым элементом формирования заказов на научные исследования и разработки. Как правило, при отборе проектов не проводится глубокая экономическая экспертиза не оцениваются показатели эффективности и рисков, не отрабатываются схемы продвижения полученных результатов в производстве. Это приводит к тому что, как уже отмечалось, многие инновационные разработки не становятся инновационным продуктом.

Исследователи отмечают, что в современных условиях инновационного развития АПК существенно возрастает роль информационно-консультативной службы, деятельность которой требует совершенствования, нужны кадры. Это тем более важно, что в настоящее время весьма низка восприимчивость сельхозпроизводителей к научным достижениям, что связано, прежде всего, с низкими экономическими возможностями предприятий.

Зарубежный опыт (Японии, Китая, Южной Кореи, США, Германии и др.) доказывает, что ключевым звеном успешного продвижения разработок на рынок является уровень организации менеджмента всего цикла проекта. По статистике, за рубежом на одного разработчика в науке приходится 10 менеджеров, которые доводят эту работу до кондиции, до того уровня, чтобы его освоить. В России на сегодняшний момент, к сожалению, пропорция обратная.

Компьютеризация и развитие информационных систем открывают новые возможности в АПК путем повышения производительности и качества выполнения работ.

На современном этапе развития мирового сельско – хозяйственного производства в значительной мере нивелируются национальные различия в условиях производства и все шире применяются отработанные универсальные технологии с гарантированным результатом [3, с. 51].

При этом ведущую роль играют крупные фирмы и компании, выпускающие тракторы, сельхозмашины и оборудование.

Новые концепции и дальнейшее совершенствование во всех сферах сельского хозяйства формулируются так: «Большие мощности сочетаются с улучшенным качеством работы» [Цит. по: 4, с. 3].

В этом процессе главную роль играют крупнейшие транснациональные производители сельскохозяйственной техники — она и определяет сущность используемых технологий.

В настоящее время новые разработки концентрируются в сферах программного управления процессами внесения удобрений, посева, обработки почвы и опрыскивания. Выдвинута и реализуется интересная идея точного сельского хозяйства или «интеллигентного растениеводства» [4, с. 4].

В развитие данной идеи разработаны автоматизированные системы с точным распределением семян, средств защиты растений и удобрений.

При этом учитывается запас в почве питательных веществ, степень распространения сорняков, вредителей или болезней.

Современные зерноуборочные комбайны также связаны через универсальную систему позиционного определения GPS и могут передавать данные о намолотах на отдельных участках поля.

Эти данные через бортовые компьютеры, которые соединены с получателем универсальной системы GPS, учитываются, и с их помощью осуществляется управление размерами штанги или сегментом рассева, а также обеспечивается позиционно точное действие системы коммутации (включение-выключение) в полевых границах (или при обходе препятствий). При помощи этих границ бортовой компьютер определяет функции параметров орудия, где в реальной обстановке орудие должно быть включено или изменен режим его работы.

Система оперирует независимо от того, имеются ли любые направляющие линии (технологическая колея) или нет. Могут также приниматься во внимание обочины, которые должны оставаться необработанными (например, в пределах защитных зон). Действия автоматической коммутации приводят к заметной помощи в работе и к полезным уточнениям ее качества [4, с. 4].

 

 

11. Внешняя память компьютера

Внешняя память предназначена для долговременного хранения программ и данных. Внешняя (долговременная) память — это место длительного хранения данных (программ, результатов расчётов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьютеры не объединены в сети (локальные или глобальные).

Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения — носителя.

Основные виды накопителей:

-накопители на гибких магнитных дисках (НГМД);

-накопители на жестких магнитных дисках (НЖМД);

-накопители на магнитной ленте (НМЛ);

-накопители CD-ROM, CD-RW, DVD.

Существует много других видов накопителей, используемых на практике реже: накопители на магнитной ленте (стриммеры), накопители на магнитооптических дисках, ZIP- накопители, накопители MiniDisk и др.

Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. Важной характеристикой внешней памяти служит ее объем. Объем внешней памяти можно увеличивать, добавляя новые накопители. Не менее важными характеристиками внешней памяти являются время доступа к информации и скорость обмена информацией. Эти параметры зависят от устройства считывания информации и организации типа доступа к ней. 

По типу доступа к информации устройства внешней памяти делятся на два класса: устройства прямого (произвольного) доступа и устройства последовательного доступа. При прямом (произвольном) доступе время доступа к информации не зависит от ее места расположения на носителе. При последовательном доступе время доступа зависит от местоположения информации. 

Скорость обмена информацией зависит от скорости ее считывания или записи на носитель, что определяется, в свою очередь, скоростью вращения или перемещения этого носителя в устройстве. 

Внешняя (долговременная) память - это место хранения данных, не используемых в данный момент в памяти компьютера. 

Устройства внешней памяти - это, прежде всего, магнитные устройства для хранения информации. 

По способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.

Раньше в вычислительной технике к внешним устройствам (ВЗУ) относили устройства хранения дискретной информации, главным образом, на магнитных лентах, барабанах, дисках.

 

21. Системы управления базами данных (СУБД) и их применение

База данных - это поименованная совокупность структурированных данных, относящихся к определенной предметной области.

Обрабатывает структурированные данные централизованный программный механизм, который называется системой управления базами данных.

Система управления базами данных (СУБД) - это программный механизм, предназначенный для записи, поиска, сортировки, обработки (анализа) и печати информации, содержащейся в базе данных.

В наиболее полном варианте СУБД может иметь следующие компоненты:

• среда пользователя, дающая возможность непосредственного управления данными с клавиатуры;

• алгоритмический язык для программирования прикладных систем обработки данных, реализованный как интерпретатор. Последний позволяет быстро создавать и отлаживать программы;

• компилятор для придания завершенной программе вида готового коммерческого про-дукта в форме независимого ЕХЕ-файла;

• программы-утилиты быстрого программирования рутинных операций (генераторы отче-тов, форм, таблиц, экранов, меню и других приложений).

Собственно СУБД - это инструментальная оболочка пользователя. Ввиду того, что такая среда ориентирована на немедленное удовлетворение его запросов, это всегда система-интерпретатор. Наличие в СУБД языка программирования позволяет создавать сложные системы обработки данных, ориентированные под конкретные задачи и под конкретного пользователя.

В компьютерной базе данных информация представляется в виде таблицы, очень похожей на электронную таблицу. Названия столбцов, представляющих «шапку» таблицы, называют именами полей или реквизитами, а сами столбцы - полями. Данные в полях называют значениями реквизитов или значениями полей. Для описания поля, кроме его имени используются следующие характеристики и свойства полей:

Тип поля. Подобно электронной таблице, работающей с тремя типами полей: текстовый, числовой и формула, в таблицах используется несколько большее количество типов полей.

Длина поля – максимально возможное количество символов.

Точность (для числовых типов полей) – количество знаков после запятой.

Маска ввода – форма средства автоматизации ввода, в которой вводятся данные в поле. Например, одно и то же значение имеют поля даты: 03.03.95 или 03.03.1995, или 03-март-1995, но отличаются по формату:

Сообщение об ошибке – текстовое сообщение, которое выдается в поле при попытке ввода ошибочных данных.

Условие на значение – ограничение, используемое для проверки правильности ввода данных.

Пустое и обязательное поле – свойство поля, определяющее обязательность заполнения поля при наполнении базы данных.

Индексированное поле – дополнительное имя поля, позволяющее ускорить операции поиска и сортировки записей.

Основные действия, которые пользователь может выполнять с помощью СУБД:

- создание структуры БД;

- заполнение БД информацией;

- изменение (редактирование) структуры и содержания БД;

- поиск информации в  БД;

- сортировка данных

- защита БД;

- проверка целостности  БД.

На самом общем уровне все СУБД можно разделить:

- на профессиональные, или промышленные;

- персональные (настольные).

Профессиональные (промышленные) СУБД представляют собой программную основу для разработки автоматизированных систем управления крупными экономическими объектами. На их базе создаются комплексы управления и обработки информации крупных предприятий, банков или даже целых отраслей. Первостепенными условиями, которым должны удовлетворять профессиональные СУБД, являются:

- возможность организации  совместной параллельной работы  большого количества пользователей;

- масштабируемость, то есть  возможность роста системы пропорционально  расширению управляемого объекта;

- переносимость на различные  аппаратные и программные платформы; 

Информация о работе Сельскохозяйственное производство как объект компьютеризации. Программные средства для решения задач, перспективы компьютеризации