Автор работы: Пользователь скрыл имя, 11 Февраля 2013 в 14:43, курсовая работа
К характерным особенностям современной техники относится широкое внедрение методов и средств автоматики и телемеханики, вызванное переходом на автоматизированное управление. Непрерывно усложняются функции выполняемые системами автоматизированного управления, а относительная значимость этих систем в процессе производства непрерывно растет.
В основе любой технической системы управления лежат информационные процессы связанные с первичным отбором, сбором, предварительной обработкой информации, ее передачей, хранением, распределением, отображением, регистрацией, считыванием и исполнением команд управления.
В нашем случае «светлый щит» построен по схеме с двумя лампами, причем при отключенном объекте горит лампа управляемая цепью «сигнализация 1», а лампа управля-
емая цепью «сигнализация 2» погашена. При изменении состояния управляемого объекта горящая лампа гаснет, а вторая лампа начинает мигать до тех пор пока ключ квитирования (КК) не установится в положение соответствующее состоянию управляемого объекта. Верхнее положение КК соответствует включенному, а нижнее - выключенному состоянию объекта управления.
Рассмотрим работу схемы управления. Пусть ключ квитирования установлен в верхнее положение и из объекта управления приходит сигнал, что он находится в включенном состоянии. В этом случае триггер 1 и триггер 10 будут находиться в одинаковом единичном состоянии (при наличии разрешения прохождения сигнала квитирования уровнем логической 1). При этом на выходах элементов 15 и 16 уровень логического 0 и следовательно на выходе элемента 17 уровень логического 0, т.е. сигнал «несоответствие» отсутствует. С выхода элемента 18 логическая 1 поступает на входы элементов 6 и 8, а логическая 1 с прямого выхода триггера 1 на входы элементов 6 и 7. Таким образом на выходе элемента : появляется логическая 1,которая через элемент 11 поступает в усилитель 21, где усиливается и подается в цепь «сигнализация 2» зажигающая лампу свидетельствующую о включенном состоянии объекта управления.
Если состояние объекта управления изменилось «отключено» ,то приходит сигнал на вход R триггера 1 и он устанавливается в нулевое состояние. При этом на выходах элементов 15 и 16 образуются уровни логической 1. На выходе элемента 17 формируется сигнал «несоответствие» уровнем логической 1.
С выхода элемента 18,уровень логического 0 поступает на вход элемента 6,на его выходе формируется 0. Уровень логического 0 с прямого выхода триггера 1 формирует 0 на выходе элемента 7. Таким образом на выходе элемента 11 уровень 0 и цепь «сигнализация 2» устанавливается в 0,лампа в этой цепи гаснет. Вместе с тем логический 0 с выхода элемента 18 формирует 0 на выходе элемента 8,а логическая 1 с инверсного выхода триггера 1 разрешает прохождение низкочастотных импульсов с генератора НЧ,которые проходя через элемент 12 и усилитель 14 вызывают мигание лампы в цепи. При установке ключа квитирования в нижнее положение «отключено» триггер 10 устанавливается в нулевое положение, что приводит к появлению 0 на выходах элементов 15, 16, 17 и снятия сигнала «несоответствие».
Появление логической 1 на входе элемента 8 формирует на его выходе логическую 1, которая через элемент 12 и14 устанавливают цепь «сигнализация 1» в состояние логической 1,что соответствует зажиганию лампы стоящей в данной цепи.
Схема синхронизации распределителей импульсов.
В системе применена циклическая схема синхронизации распределителей.
На рис.6.2 представлена
циклическая схема
На рис.6.3 представлена функциональная схема формирования импульсов, а на рис.6.4 временные диаграммы её работы, схема работает следующим образом. По сигналу Пуск триггера 2 и 5 устанавливаются в 1. Триггер 5 формирует передний фронт СИ, а триггер 2 разрешает прохождение тактовых импульсов с задающего генератора 1.через схему 3 на делитель частоты 4 с коэффициентом деления «К».
С появлением первого импульса от делителя триггер 5 устанавливается в нулевое состояние в результате чего формируется СИ. Тактовые импульсы ТИ предназначенные для управления работой распределителя импульсов поступают с частотой f/К на выход через схему 6. Цикл формирования СИ и ТИ завершается при поступлении сигнала «Сброс» на вход R триггера 2.
В приёмном устройстве блок синхронизации состоит из анализатора длительности импульсов и формирователя тактовых импульсов. Анализатор выделяет синхроимпульсы и запускает формирователь тактовых импульсов (ТИ) обеспечивающий синхронную работу приёмного и передающего распределителей.
Функциональная схема анализатора длительности импульсов (АДИ) и формирователя тактовых импульсов показана на рис.6.5, а временные диаграммы её работы на рис.6.6.
Схема работает следующим образом. Импульсы поступают на вход одновибратора 1 и запускают его своим передним фронтом. Одновибратор вырабатывает импульсы, длительность которых соответствует длительности синхроимпульсов. Формирователи 2 и 3, в качестве которых используются дифференцирующие цепи, выделяющие задние фронты (срезы) всех поступающих на их входы импульсов. Очевидно, что на входе схемы 4 получается сигнал только в случае поступления СИ на вход АДИ. Выделенный сигнал устанавливает триггер 5 в единицу, которая разрешает прохождение импульсов от задающего генератора 6 через схему 7 на вход делителя частоты 8.
Выходные ТИ управляют работой распределителя импульсов. На последнем такте работы триггер 5 сбрасывается в 0.
Аналого-цифровой преобразователь (см. рис.6.7).
Согласно заданию для системы должен быть разработан преобразователь перемещения в код Грея. Число разрядов преобразователя при погрешности преобразования 1% определено в разделе и составляет 7 разрядов двоичного кода. Количество разрядов двоичного кода и кода Грея совпадают, следовательно преобразователь 7-ми разрядный. Разрабатываем фотоэлектрический преобразователь перемещений в код Грея построенный по методу считывания. Функциональная схема такого преобразователя приведена на рис.6.7.
В фотоэлектрических преобразователях в качестве задающего элемента используется оптическое стекло, на которое нанесена кодовая маска в виде сочетаний прозрачных и не прозрачных участков. В качестве чувствительных элементов применяются фотоэлементы.
Свет от источников проходит через оптическое устройство, формирующее луч считывания и кодовый диск и попадает на фотоэлементы. Если между источником света и фотоэлементом находится прозрачный участок диска, то фотоэлемент будет находится в проводящем состоянии, что соответствует наличию 1 в данном разряде кода. Если между источником света и фотоэлементом находится непрозрачная площадка, то последний не будет проводить и это состояние будет соответствовать 0. Далее через усилитель сигналов код пересылается для записи в запоминающее устройство.
Применение в данном типе преобразователя кода Грея определяется следующими соображениями. При применении обычного двоичного кода из-за технологических погрешностей (перенос задающего элемента, неточность нанесения маски) могут возникать большие погрешности из-за возможного неодновременного изменения цифр в отдельных разрядах двоичного числа во время перехода от одного числа к другому. Причем ошибка может быть как минимальной, если она возникает в младшем разряде, так и максимальной, если она возникает в старшем разряде кода.
Для устранения этого недостатка и применяется код Грея, т.к. в этом коде при переходе от одного числа к другому комбинация изменяется только в одном разряде, а не в нескольких, как в двоичном коде. Причем кодовая маска составлена так, что изменение (в старшем или младшем – безразлично) может дать погрешность только на единицу, т.е. в весе младшего разряда.
Цифро-аналоговый преобразователь.
ЦАП второго ТИ строится по методу суммирования токов с весовыми значениями резисторов (см. рис.6.8). ЦАП состоит из последовательно-параллельного регистра, преобразующего последовательный код в параллельный, источников тока I1 – In, ключей коммутации К1 – Кn, декодирующей сетки, выходного усилителя. При поступлении последовательного кода, он преобразуется в параллельный, который поступая на управление ключами коммутации заменяет соответствующие из них. На входе выходного усилителя формируется напряжение в соответствие с поступившем кодом. Декодирующая сетка с весовыми резисторами для преобразования кода в напряжение по методу суммирования токов состоит из последовательно соединённых резисторов, сопротивления которых пропорциональны весам двоичных разрядов. Все источники тока дают одинаковое значение тока и имеют бесконечно большое внутреннее сопротивление. на выходе сетки представляет собой суммарное падение напряжения на цепочке резисторов. Если замкнуть только ключ Кn, то ток источника In протекает по всем сопротивлениям схемы и
Uвых = IR∙2 n-1.
Если все ключи замкнуты, то на выходе возникает максимальное значение напряжения:
Uвых = IR∙ (2 n-1 + 2 n-2 + … + 21 + 20).
Это значит,
что выходное напряжение является функцией
преобразуемой кодовой
Цифровая индикация.
Для отображения цифровой информации полученной с выхода АЦП в системе используется устройство цифровой индикации с формированием цифр в процессе считывания. В нашем случае применяем индикаторы на светодиодных матрицах, в которых формирование цифры происходит из семи полосок, так называемые семисегментные индикаторы. Такие индикаторы требуют специальное устройство для их управления, которое называется дешифратором двоичного кода в код управления семисегментным индикатором. Одна декада такого семисегментного индикатора с дешифратором изображена на рисунке 6.9. В качестве индикатора используется семисигментный индикатор АЛС 321, а в качестве дешифратора интегральная микросхема 514 ИД 2. Например, при поступлении на вход дешифратора кода соответствующего четырем, т.е. 0100, открываются ключи выходам дешифратора 514 ИД 2 и начинают светиться сегменты 2,3,6,7, образуя цифру 4.
Преобразователь двоичного кода в инверсный.
В качестве кода адреса КП используется инверсный код. Инверсный код по сравнению с двоичным кодом имеет удвоенное число символов, причем вторая половина группы символов совпадает с первой, если число 1 в исходной группе чётное и добавляемые разряды инвертируются, если число 1 в исходной группе нечётное. Схема, выполняющая данную функцию приведена на рис.6.10.
Работает схема следующим образом. Исходная комбинация поступает на вход устройства анализа чётности 1, на входы инверторов 2-4 и первый канал коммутатора 5. Выходы инверторов подключены ко второму каналу коммутатора. При наличии в исходной комбинации чётного числа 1, на выходе анализатора чётности формируется логический 0, и данные с канала 1 коммутатора в прямом коде выдаются на выход коммутатора. Если число 1 – нечётно, на выходе схемы 1 формируется 1 и с канала 2 коммутатора код в инверсном виде выдаётся на выход коммутатора.
Приём инверсного кода осуществляется в 2 этапа. На первом этапе определяется число 1 в первой основной группе символов. Если число 1 – чётное, то вторая группа принимается без изменений, если нечётное, то символы второй группы инвертируются. После этого они поэлементно сравниваются и при наличии хотя бы одного несовпадения, комбинация бракуется.
Схема приёмной части инверсного кода приведена на рис.6.11. Работает она следующим образом. Первая исходная группа принимается устройством анализа чётности 1, вторая в исходном состоянии поступает на вход первого канала коммутатора 5 и в инверсном коде на вход второго канала коммутатора 5. Если число 1– чётно, то на выходе схемы 1 формируется 0 и информация второй группы в прямом коде поступает через коммутатор 5 на входы полусумматоров 6-8, где поразрядно сравниваются при совпадении на выходе элемента 9 формируется уровень 0, что свидетельствует об отсутствии ошибок. Если сравнение не происходит, то на выходе элемента 9 формируется 1 и кодовая комбинация бракуется. Если число 1 в исходной комбинации нечётно, то на выход коммутатора передаётся инверсный код второй группы и далее всё протекает аналогично.
Преобразование двоичного кода в код Хемминга.
В коде режима КП используется код с исправлением одной ошибки. Код режима КП имеет три двоичных разряда и соответствующие им 6 разрядов кода Хемминга.
Код Хемминга имеет вид:
К1 К2 d3 К3 d2 d1
d1 – d3 – код данных (d3 – старший разряд);
К1 - К3 – контрольные символы.
Определение состава контрольных символов, т.е. определение того какой контрольный символ должен стоять на контрольной позиции (0 или 1) производится по коэффициентам при помощи проверки на чётность следующим образом. В таблице 6.1 записаны все кодовые комбинации, исключая нулевую, для трёхразрядного двоичного кода и рядом справа, сверху вниз поставлены символы комбинации кода Хемминга.
3 (d3) |
2 (d2) |
1 (d1) |
Символы кода |
0 0 0 1 1 1 |
0 1 1 0 0 1 |
1 0 1 0 1 0 |
К1 К2 d3 К3 d2 d1 |
По таблице 6.1 составляется таблица 6.2 , в которой выписаны символы в трёх строках в следующей последовательности:
Таблица 6.2.
К1 |
+ d3 |
+ d2 |
- |
К2 |
+ d3 |
- |
+ d1 |
К3 |
- |
+ d2 |
+ d1 |
В первую строку таблицы 6.2 записываются символы, против которых проставлены символы «1» в младшем разряде комбинации двоичного кода таблицы 6.1, во вторую строку проверочных коэффициентов записываются символы, против которых стоит 1 во втором разряде таблицы 6.1, третью строку таблицы 6.2 записываются символы, против которых стоит 1 в третьем разряде таблицы 6.1. Число проверок означает число строк в проверочной таблицы 6.2,которое равно числу контрольных символов К.
Нахождение состава контрольных символов при помощи проверок производится следующим образом. Суммируются информационные символы, входящие в каждую строку таблицы 6.2. Если сумма 1 в данной строке чётная, то значение символа К=0, если нечётное, то К=1. При помощи первой строки таблицы 6.2 определяется К1, второй – К2 и третьей – К3.