Автор работы: Пользователь скрыл имя, 08 Июня 2014 в 12:32, реферат
Параллельный компьютер, или мультипроцессор сам по себе является распределенной системой, составленной из узлов (процессоров, компонентов памяти), соединенных быстрой сетью внутри общего корпуса. Технология распределенных баз данных может быть естественным образом пересмотрена и распространена на параллельные системы баз данных, т. е. системы баз данных на параллельных компьютерах. Благодаря применяемому в системах этого типа параллелизму при управлении данными пользователи получают серверы баз данных высокой производительности и высокой доступности за существенно меньшую цену, чем эквивалентные системы на основе мэйнфpeймoв.
В данной работе представлен обзор технологий распределенных и параллельных СУБД, выделены их отличительные черты, отмечены схожие признаки. Цель работы – помочь в осмыслении уникальной роли систем каждого из этих двух типов и их взаимодополняемости в решении задач управления данными.
Bвeдeниe
1. Ocнoвныe пoнятия
2. Тeхнoлoгии рaспрeдeлeнных и пaрaллeльных бaз дaнных
3. Упрaвлeниe oднoврeмeнным дoстyпoм
4. Рaзмeщeниe дaнных
5. Пpoблeмы сeтeвoй мacштaбиpyeмocти
6. Pacпpeдeлeннaя и пaрaллeльнaя oбpaбoткa зaпpoсoв
7. Распределенная обработка транзакций
Заключение
Список использованной литературы
Coдeржaниe
Bвeдeниe
1. Ocнoвныe пoнятия
2. Тeхнoлoгии рaспрeдeлeнных и пaрaллeльных бaз дaнных
3. Упрaвлeниe oднoврeмeнным дoстyпoм
4. Рaзмeщeниe дaнных
5. Пpoблeмы сeтeвoй мacштaбиpyeмocти
6. Pacпpeдeлeннaя и пaрaллeльнaя oбpaбoткa зaпpoсoв
7. Распределенная обработка транзакций
Заключение
Список использованной литературы
Bвeдeниe
Становление систем управления базами данных (СУБД) совпало по времени со значительными успехами в развитии технологий распределенных вычислений и параллельной обработки. В результате возникли распределенные системы управления базами данных и параллельные системы управления базами данных. Именно эти системы становятся доминирующими инструментами для создания приложений интенсивной обработки данных.
Благодаря интеграции рабочих станций в распределенную среду становится возможным более эффективное распределение функций в ней, когда прикладные программы выполняются на рабочих станциях, называемых серверами приложений, а базы данных обслуживаются выделенными компьютерами, называемыми серверами баз данных. Это служит источником развития таких распределенных архитектур, где в роли узлов выступают не просто компьютеры общего назначения, а специализированные серверы.
Параллельный компьютер, или мультипроцессор сам по себе является распределенной системой, составленной из узлов (процессоров, компонентов памяти), соединенных быстрой сетью внутри общего корпуса. Технология распределенных баз данных может быть естественным образом пересмотрена и распространена на параллельные системы баз данных, т. е. системы баз данных на параллельных компьютерах. Благодаря применяемому в системах этого типа параллелизму при управлении данными пользователи получают серверы баз данных высокой производительности и высокой доступности за существенно меньшую цену, чем эквивалентные системы на основе мэйнфpeймoв.
В данной работе представлен обзор технологий распределенных и параллельных СУБД, выделены их отличительные черты, отмечены схожие признаки. Цель работы – помочь в осмыслении уникальной роли систем каждого из этих двух типов и их взаимодополняемости в решении задач управления данными.
1. Основные понятия
Распределенная база данных (DDB – distributed database) – это совокупность логически взаимосвязанных баз данных, распределенных в компьютерной сети. Распределенная система управления базой данных определяется как программная система, которая позволяет управлять распределенной базой данных таким образом, чтобы ее распределенность была прозрачна для пользователей. В этом определении следует уточнить две отличительных архитектурных особенности. Первая из них заключается в том, что система состоит из (возможно, пустого) множества узлов приема запросов (query site) и непустого множества узлов данных (data site). Узлы данных обладают средствами для хранения данных, а узлы приема запросов – нет. В узлах приема запросов лишь выполняются программы, реализующие пользовательский интерфейс для доступа к данным, хранящимся в узлах данных. Вторая особенность состоит в том, что узлы логически представляют собой независимые компьютеры. Следовательно, у такого узла имеется собственная основная и внешняя память, установлена собственная операционная система (может быть, одна и та же на всех узлах, а возможно, и нет) и имеется возможность выполнять приложения. Узлы связаны компьютерной сетью, а не входят в мультипроцессорную конфигурацию. Важно подчеркнуть слабую связанность процессоров, которые обладают собственными операционными системами и функционирует независимо.
База данных физически распределяется по узлам данных на основе фрагментации и репликации данных. При наличии схемы реляционной базы данных каждое отношение фрагментируется на горизонтальные или вертикальные разделы. Горизонтальная фрагментация реализуется при помощи операции селекции, которая направляет каждый кортеж отношения в один из разделов, руководствуясь предикатом фрагментации. Например, для отношения Employee возможна фрагментация в соответствии с местоположением рабочих мест служащих. При вертикальной фрагментации отношение делится на разделы при помощи операции проекции. Например, один раздел отношения Employee может содержать поля Emp_number, Emp_name и Address, а другой – поля Emp_number, Salary и Manager. За счет фрагментации данные приближаются к месту их наиболее интенсивного использования, что потенциально снижает затраты на пересылки; уменьшаются также размеры отношений, участвующих в пользовательских запросах.
При ослаблении отличительных особенностей распределенной СУБД получается параллельная система баз данных. Не существует четкого разграничения между параллельными и распределенными СУБД. В частности, архитектуры параллельных СУБД без совместно используемых ресурсов (sharing-nothing), которые обсуждаются ниже, схожи со слабо связанными распределенными системами. В параллельных СУБД используются новейшие многопроцессорные архитектуры, и на основе этого подхода создаются высокопроизводительные серверы баз данных высокой доступности, стоимость которых значительно ниже эквивалентных систем на мэйнфреймах.
Параллельную СУБД можно определить как СУБД, реализованную на мультипроцессорном компьютере. Такое определение подразумевает наличие множества альтернатив, спектр которых варьируется от непосредственного переноса существующих СУБД с переработкой лишь интерфейса к операционной системе до изощренных комбинаций алгоритмов параллельной обработки и функций баз данных, приводящих к новым аппаратно-программные архитектурам.
Решение заключается в применении широкомасштабного параллелизма, чтобы усилить мощность отдельных компонентов путем их интеграции в целостную систему на основе соответствующего программного обеспечения параллельных баз данных. Важное значение имеет применение стандартных аппаратных компонентов, для того чтобы иметь возможность с минимальным отставанием использовать результаты постоянных технологических усовершенствований. В программном обеспечении базы данных могут быть предусмотрены три вида параллелизма, присущие приложениям интенсивной обработки данных. Межзапросный параллелизм предполагает одновременное выполнение множества запросов, относящихся к разным транзакциям. Под внутризапросным параллелизмом понимается одновременное выполнение сразу нескольких операций (например операций выборки), относящихся к одному и тому же запросу. И внутризапросный, и межзапросный параллелизм реализуется на основе разделения данных, аналогичного горизонтальному фрагментированию. Наконец, понятие внутриоперационного параллелизма означает параллельное выполнение одной операции в виде набора субопераций с применением, в дополнение к фрагментации данных, также и фрагментации функций. Языки баз данных, ориентированные на операции над множествами, обеспечивают много возможностей для использования внутриоперационного параллелизма.
Распределенная/параллельная база данных – это именно база данных, а не "коллекция" файлов, индивидуально хранимых на разных узлах сети. В этом заключается разница между DDB и распределенной файловой системой.
Система обладает полной функциональностью СУБД. Она не сводится по своим возможностям ни к распределенным файловым системам, ни к системам обработки транзакций. Обработка транзакций – только одна из функций, предоставляемых подобными системами. Наряду с этим они должны также обеспечивать функции запросов и структурной организации данных, которые необязательно поддерживаются системами обработки транзакций.
Распределение (включая фрагментацию и репликацию) данных по множеству узлов невидимо для пользователей. Это свойство называется прозрачностью. Технология распределенных/параллельных баз данных распространяет основополагающую для управления базами данных концепцию независимости данных на среду, где данные распределены и реплицированы по множеству компьютеров, связанных сетью. Это обеспечивается за счет нескольких видов прозрачности: прозрачность сети (следовательно, прозрачность распределения), прозрачность репликации и прозрачность фрагментации.
Вопросы прозрачности более критичны для распределенных, чем для параллельных СУБД. Для этого есть две причины. Во-первых, многопроцессорные системы, для которых реализуются параллельные СУБД, функционируют под управлением единой операционной системы. Во-вторых, разработки программного обеспечения на параллельных системах поддерживаются языками параллельного программирования, также обеспечивающими некоторую степень прозрачности.
В распределенных СУБД данные и приложения, которые осуществляют доступ к ним, могут быть локализованы на одном и том же узле, благодаря чему исключается (или сокращается) потребность в удаленном доступе к данным, характерная для систем телеобработки данных в режиме разделения времени. Далее, поскольку на каждом узле выполняется меньше приложений и хранится меньшая порция базы данных, можно сократить также конкуренцию при доступе к данным и ресурсам.
Высокая производительность – одна из важнейших целей, на достижение которой направлены технологии параллельных СУБД. Как правило, она обеспечивается за счет сочетания нескольких взаимно дополняющих решений, таких как применение операционных систем, ориентированных на поддержку баз данных, параллелизм, оптимизация, балансировка нагрузки. Наличие операционной системы, "осведомленной" о специфических потребностях баз данных (например относительно управления буферами), упрощает реализацию функций баз данных нижнего уровня и способствует снижению их стоимости.
В идеале параллельная (и, в меньшей степени, распределенная) СУБД обладает свойством линейной масштабируемости (linear scaleup) и линейного ускорения (linear speedup). Под линейной масштабируемостью понимается сохранение того же уровня производительности при увеличении размера базы данных и одновременном пропорциональном увеличении процессорной мощности и объема памяти. Линейное ускорение означает, что с наращиванием процессорной мощности и объема памяти при сохранении прежнего размера базы данных пропорционально возрастает производительность.
2. Технологии распределенных и параллельных баз данных
Распределенные и параллельные СУБД предоставляют ту же функциональность, что и централизованные СУБД, если не считать того, что они работают в среде, где данные распределены по узлам компьютерной сети или многопроцессорной системы. Как уже упоминалось, пользователи могут вообще ничего не знать о распределении данных. Таким образом, эти системы обеспечивают пользователям логически интегрированное представление физически распределенной базы данных. Поддержка подобного представления – источник ряда сложных проблем, которые должны решаться системными функциями. Данный раздел посвящен обсуждению этих проблем. Предполагается, что читатель знаком с основными понятиями баз данных.
Архитектуры параллельных систем варьируются между двумя крайними точками, называемыми архитектура без разделяемых ресурсов (shared-nothing) и архитектура с разделяемой памятью (shared-memory). Промежуточную позицию занимает архитектура с разделяемыми дисками (shared-disk).
Примерами систем параллельных баз данных являются продукты DBC (Teradata) и NonStop-SQL (Tandem), а также ряд прототипов, таких как BUBBA, EDS, GAMMA, GRACE, PRISMA и ARBRE.
К системам параллельных баз данных с разделяемой памятью относятся XPRS, DBS3 и Volcano, а также перенесенные на мультипроцессоры с разделяемой памятью наиболее известные промышленные СУБД. Первым примером такой системы была реализация СУБД DB2 на IBM3090 с шестью процессорами. Во всех известных на сегодня коммерческих продуктах (таких как Ingres и Oracle) используется только межзапросный (но не внутризапросный) параллелизм.
Примеры параллельных СУБД с разделяемыми дисками: продукт IMS/VS Data Sharing (IBM), а также продукты VAX DBMS и Rdb компании DEC. Реализация Oracle на компьютерах VAXcluster (DEC) и NCUBE также использует разделение дисков, поскольку этот подход требует минимальных расширений в ядре СУБД. Отметим, что во всех этих системах применяется только межзапросный параллелизм.
Обработка и оптимизация запросов
Обработка запроса (query processing) – это процесс трансляции декларативного определения запроса в операции манипулирования данными низкого уровня. Стандартным языком запросов, поддерживаемым современными СУБД, является SQL. Оптимизация запроса (query optimization) – это процедура выбора "наилучшей" стратегии выполнения запроса из множества альтернатив.
Для централизованной СУБД весь процесс состоит обычно из двух шагов: декомпозиции запроса (query decomposition) и оптимизации запроса. Декомпозиция запроса – это трансляция его с языка SQL в выражение реляционной алгебры. В ходе декомпозиции запрос подвергается семантическому анализу; при этом некорректные запросы отвергаются, а корректные упрощаются. Упрощение заключается, в частности, в исключении избыточных предикатов, которые могли быть привнесены за счет использования представлений, а также исходя из ограничений безопасности и семантической целостности. Упрощенный запрос преобразуется в алгебраическую форму.
Для заданного SQL-запроса существует более чем одно алгебраическое представление, причем некоторые из них могут быть "лучше" других. "Качество" алгебраического выражения определяется исходя из объема затрат, необходимых для его вычисления. Традиционная процедура состоит в том, чтобы сначала оттранслировать SQL-запрос в какое-нибудь выражение, а затем, применяя правила эквивалентных алгебраических преобразований, получать из него другие алгебраические преобразования, пока не будет найдено "наилучшее". При поиске "наилучшего" выражения используется функция стоимости, в соответствии с которой вычисляется сумма затрат, необходимых для выполнения запроса. Этот процесс и называется оптимизацией запросов.
Параллельная обработка запросов в целом подобна распределенной обработке запросов. Она опирается на преимущества внутризапросного параллелизма, который обсуждался выше, а также межоперационного параллелизма.
Внутриоперационный (intra-operation) параллелизм достигается за счет выполнения операции сразу на нескольких узлах многопроцессорной машины. Для этого необходимо предварительное разбиение операндов, т.е. их горизонтальная фрагментация по узлам. Способ разделения базового отношения относится к области физического проектирования базы данных. Обычно разделение производится путем применения некоторой хэш-функции к тому атрибуту отношения, который будет часто являться атрибутом соединения. Набор узлов, в которых хранится отношение, называется домашним набором (home). Домашним набором узлов операции (home of an operation) называется набор узлов, в которых она выполняется; оно должно совпадать с домашним набором узлов ее операндов, чтобы операция имела доступ к своим операндам. Это значит, что для бинарных операций, таких как соединения, может потребоваться переразделение (repartitioning) одного из операндов. В некоторых случаях оптимизатор, возможно, сочтет целесообразным провести переразделение обоих операндов. Для реализации внутриоперационного параллелизма в параллельных СУБД применимы некоторые методы, разработанные для распределенных баз данных.