Автор работы: Пользователь скрыл имя, 19 Июня 2014 в 20:44, курсовая работа
Целью дипломной работы является разработка блока питания (далее БП) форм-фактора АТХ который в полной мере отвечает требованиям, которые выдвигает стандарт созданный корпорацией INTEL, имеет высокие показатели надежности и малую себестоимость.
Так как все схемы реализованы приблизительно одинаково, будет достаточно рассмотреть и описать работу одной схемы (+12В).
Когда сквозь первичную обмотку 1-2 силового трансформатора Т1 протекает линейно нарастающий ток, на вторичной обмотке 3-4 действует ЕДС постоянного уровня. Полярность ЕДС такая, что на выводе 3 присутствует позитивный потенциал ЕДС относительно корпуса. На выводе 4 этот потенциал будет негативным. Поэтому линейно нарастающий ток протекает по цепи: 3 T1-верхний диод в диодной сборке VD9 – обмотка W1 дроссель групповой стабилизации L5 – дроссель L6 – конденсатор С12 – корпус 7 Т1.
Нижний диод сборки на этом интервале закрыт негативным напряжением на аноде, и ток сквозь него не протекает.
Кроме подзарядки конденсатора С12 происходит передача энергии на выход канала (поддерживается ток нагрузки). На этом же интервале времени в сердечнике дросселей L5 и L6, накапливается магнитная энергия.
Дальше ток через первичную обмотку силового трансформатора прекращается как результат закрытия силового транзистора. ЕДС на вторичных обмотках исчезает. Продолжается “мертвая зона”. На этом интервале энергия, сбереженная в дросселях L5, L6 передается в конденсатор С12 и в нагрузку.
Этот ток - линейно спадающий во времени. Дальше открывается второй силовой транзистор и через первичную обмотку Т1 начинает протекать линейно нарастающий ток обратного направления. Поэтому полярность ЕДС на вторичных обмотках будет обратной: на выводе 4 позитивный, на выводе 3 негативный относительно корпуса. Поэтому на этом интервале проводником будет нижний диод в диодной сборке VD9, а ее верхний диод будет закрытым. Ток через обмотку W1, L5 и L6 опять будет линейно нарастающим и подзарядит конденсатор С12, и также будет поддерживать ток в нагрузке. Резистор R12 предназначен для быстрой разрядки конденсатора C12 и других вспомогательных емкостей после выключения ИБП для приведения всей схемы БП в первичное состояние.
Реализация канала в +3.3В кое-где отличается от реализации других каналов. Для получения напряжения в +3.3В используется обмотка на 5В, напряжение из которой преобразуется на микросхеме TL431C с навесными элементами: R17, R18, R19, R20, R21, R22, R23, VD14, C17, C18, VT3.
3.4 Стабилизация выходных напряжений ИБП.
Схема стабилизации выходных напряжений в ИБП представляет собой замкнутую петлю автоматической регуляции. Эта петля включает в себя:
- схему управления;
- согласующий предусилительный каскад;
- управляющий трансформатор;
- силовой каскад;
- силовой импульсный трансформатор;
- выпрямляющий блок;
- дроссель межканальной связи;
- блок фильтров;
- делитель напряжения обратной связи;
- делитель опорного напряжения.
В составе схемы управления имеются следующие функциональные узлы:
- усилитель
сигнала рассогласования с
- ШИМ – компаратор;
- генератор пилообразного напряжения;
- источник
опорного стабилизированного
В процессе работы усилитель сигнала рассогласования сравнивает входной сигнал делителя напряжения с опорным напряжением делителя. Усиленный сигнал рассогласования поступает на широтно-импульсный модулятор, который руководит оконечным каскадом усилителя мощности, в который, в свою очередь, подает модулируемый управляющий сигнал на силовой каскад преобразователя через управляющий трансформатор Т2. Питание силового трансформатора осуществляется по безтрансформаторной схеме. Переменное напряжение сети выпрямляется сетевым выпрямителем и подается на силовой каскад, где сглаживается конденсаторами емкостной стойки. Часть выходного напряжения стабилизатора сравнивается с постоянным опорным напряжением и потом осуществляется усиление полученной разницы (сигнала рассогласования) с введением соответствующей компенсации. Широтно–импульсный модулятор превращает аналоговый сигнал управления в широтно–модулируемый сигнал с переменным коэффициентом заполнения импульса.
Схема модулятора осуществляет сравнение сигнала, который поступает из выхода усилителя сигнала рассогласования с пилообразным напряжением, которое получают из специального генератора.
Динамика процесса стабилизации следующая.
Пусть под действием какого-то дестабилизирующего фактора выходное напряжение в канале +5В уменьшилось. Тогда уменьшится уровень сигнала обратной связи на неинвертирующий вход усилителя ошибки. Соответственно, выходное напряжение усилителя уменьшится. Поэтому увеличится ширина выходных импульсов микросхемы на выводах 8 и 11. То есть увеличится время открытого состояния за период силовых ключевых транзисторов инвертирования. Соответственно, больше чем раньше, часть периода в сердечнике трансформатора будет существовать нарастающий магнитный поток, а значит, дольше, чем раньше, на вторичных обмотках этого трансформатору будут действовать приведенные этим потоком ЕДС. Поэтому увеличивается постоянная составляющая, которая выделяется сглаживающим фильтром из импульсной последовательности после выпрямления, то есть исходное напряжение канала +5В увеличится, возвращаясь к номинальному значению.
При увеличении выходного напряжения +5В процессы будут обратными.
Стабилизация выходных напряжений других каналов осуществляется путем групповой стабилизации. Для этого в схему блока включается специальный элемент межканальной связи, в качестве которого обычно используют высокообмоточный дроссель.
При этом изменение любого выходного напряжения приводит, благодаря электромагнитной связи между обмотками дросселя групповой стабилизации, к соответствующему изменению выходного напряжения +5В с последующим включением механизма ШИМ. Дроссель групповой стабилизации представляет собой пять обмоток (по одной обмотке в каждом выходном канале БП), намотанных на один ферритовый сердечник и которые включены синфазно. В этом случае дроссель в схеме выполняет две функции:
функцию приглаживания пульсаций выпрямленного напряжения – при этом каждая обмотка для своего канала представляет сглаживающий дроссель фильтра и работает как обычный дроссель;
функцию межканальной связи при групповой стабилизации – при этом благодаря электромагнитной связи через сердечник дроссель работает как трансформатор, который передает величину изменения токов, которые протекают через обмотки каналов +12В, -12В, -5В, +3.3В в обмотку +5В.
Такое построение гарантирует обеспечение устойчивой работы ИБП, что является необходимым условием его нормального функционирования.
3.5 Схема выработки сигнала PG (Power Good).
Наличие сигнала PG является обязательным для любого блока питания, который отвечает стандарту IBM.
Схема выработки сигнала PG имеет две функции:
первая функция – это задержка появления сигнала PG высокого уровня при включении ИБП, который позволяет запуск;
вторая функция – это функция преждевременного перехода сигнала PG в неактивный низкий уровень, который запрещает работу процессора при выключении ИБП, а также в случаях возникновения разнообразного рода аварийных обстоятельств, прежде чем начнет уменьшаться напряжение которое питает цифровую часть системного модуля.
В качестве базового элемента при построении схемы использована микросхема типа LM393. Микросхема представляет собой компаратор напряжений.
Расчет работоспособности схемы.
Работа импульсного источника питания достаточно весомо зависит от того, на сколько точно выполнен расчет трансформатора. Даже небольшое отклонение его параметров от оптимальных для конкретного источника питания может привести к уменьшению КПД и ухудшению характеристик. Учитывая важность этого элемента схемы, рассчитаем его параметры.
Расчет.
1. Определим
мощность, которую использует
,
где - мощность, которую потребляет нагрузка ( ).
2. Зададимся габаритной мощностью , чтобы подобрать магнитный сердечник для трансформатора. Магнитный сердечник подбираем исходя из условия .
,
где - площадь пересечения магнитного сердечника;
- площадь окна магнитного
- минимальная рабочая частота( );
- магнитная индукция в
- коэффициент заполнения окна проводом ( );
Выбираем из справочника сердечник М2000 НН.
3. Определим
напряжение на первичной
4. Определим количество витков первичной обмотки.
5. Найдем
максимальный ток первичной
6. Определим
количество витков исходной
4. Разработка конструкции прибора.
Для разработки модели возможной конструкции БП нужно объективно проанализировать все исходные данные, выделить среди них наиболее важные, которые имеют наибольшее влияние на надежность и стабильность Работы блока питания и, исходя из этих рассуждений, разработать конструкцию, которая в максимальной мере удовлетворит этим требованиям.
При разработке конструкции БП существуют определенные ограничения в виде стандартов разработанных фирмой IBM:
высота: 86мм;
ширина: 140мм;
длина: 150мм;
место для вывода проводников;
место для сетевых разъемов;
место для выключателя.
Поэтому уменьшение габаритов, или изменение места размещения органов управления, входу/выходу блока является невозможным. Это в свою очередь налагает определенные ограничения на оформление печатной платы (ПП).
Известно, что КПД радиоэлементов небольшой, поэтому часть энергии выделяется в качестве тепла, которое в свою очередь необходимо отводить из корпуса. Также стоит отметить, что БП работает в составе системного блока, и он должен отводить нагретый воздух от центрального процессора и других элементов, которые находятся в середине корпуса системного блока и также выделяют тепловую энергию. Это условие ставит важную задачу по обеспечению надежной работы БП – обеспечению теплового режима.
Учитывая то, что ИБП является источником импульсных помех, необходимо обеспечить электромагнитное экранирование схемы БП.
И самой главной задачей на этапе конструирования, для обеспечения конкурентоспособности изделия, достижение низкой себестоимости разрабатываемой конструкции, при одновременном сохранении всех показателей.
Исходя из вышеуказанных рассуждений можно составить список требований, в порядке уменьшения важности, которых нужно придерживаться при конструировании компьютерного ИБП:
обеспечение электрической безопасности при эксплуатации;
обеспечение теплового режима;
обеспечение электромагнитной совместимости;
обеспечение низкого уровня шума;
обеспечение технологичности;
обеспечение ремонтопригодности;
обеспечение низкой себестоимости.
Разработаем три варианта конструкции.
Целью этого раздела дипломной работы является определение вредных и опасных производственных факторов при разработке, наладке и эксплуатации устройства, а также разработка мероприятий, которые направлены на создание условий труда, которые отвечают требованиям норм и стандартов по охране труда и технике безопасности.
Особенное внимание будет направленно на факторы, которые могут подействовать на работоспособность и безопасность монтажника и наладчика отдельных блоков и всего аппарата вместе. Это связано с тем, что при выполнении этих работ необходимо выполнять пайку, измерение режима работы схемы, наладку, контроль и т.д.
10.1 Анализ опасных и вредных производственных факторов.
К основным вредным и опасным факторам, что влияют на работников, которые задействованы на производстве РЭС, относят:
Повышенные уровни электромагнитного поля (уровни излучений должны отвечать ГОСТ 12.1.006-84);
Недостаточная освещенность рабочей зоны (условия освещенности производственных помещений должны удовлетворять нормам, отмеченным в СНиП ИИ-4-79/85);
Опасность поражения электрическим током;
Неудовлетворительные параметры микроклимата рабочей зоны (величины показателей микроклимата в производственных помещениях должны удовлетворять нормам, отмеченным в ГОСТ 12.1.005-88 и ДСН 3.3.6.042-99);
Содержание (в воздухе рабочей зоны) вредных веществ разного характера в опасных концентрациях, что превышают предельно допустимые (ГДК вредных веществ в воздухе рабочей зоны должна удовлетворять нормам, отмеченным в ГОСТ 12.1.005-88 и ГОСТ 12.1.007-80, для аэрозоля свинца см. п. 1.1.2);
Повышенный уровень шума на рабочем месте (допустимые уровни звукового давления в октавных полосах частот, уровни звука и эквивалентные уровни звука на рабочих местах стоит принимать соответственно санитарным нормам допустимых уровней шума на рабочих местах ДСН 3.3.6.037-99);
Повышенная напряженность электрического поля промышленной частоты на рабочем месте (напряженность электрических полей промышленной частоты на рабочих местах должна удовлетворять нормам, отмеченным в ГОСТ 12.1.002-88).
10.2 Условия труда на рабочем месте.
Помещение, в котором происходят технологические операции по изготовлению и наладке изделия находится в панельном доме. Вибрации и вредные вещества отсутствуют. Покрытие пола керамическая плитка.
Геометрические размеры помещения:
длина а = 10.0 м;
ширина b = 5 м;
высота h = 3.4 м;
Количество лиц, работающих в помещении, – 6 человек.
Определим значение площади и объема помещения:
S1=a×b=5×10=50 м2 – площадь помещения;
SП=8,5 м2 – общая площадь столов и шкафа;
S= S1 -Sп=41,5 м2;
V=S×h=141,1 м3;
Информация о работе Расчет оптимальной мощности блока питания ПК форм-фактора АТХ (12V)