Принципы построения вычислительных машин

Автор работы: Пользователь скрыл имя, 15 Марта 2013 в 19:30, реферат

Краткое описание

Россия стоит на пути исторической необходимости перехода на новый уровень общественного и экономического развития, определяемыми жестокими требованиями рыночной экономики. Речь идет о пути формирования информационного общества. Материальная база информационного общества является информационная экономика. Основы информационной экономики составляет создание и потребление информационных ресурсов или информационных ценностей.

Содержание

Введение ……………………………………………………………………….3
1. Принципы построения, архитектура ЭВМ ………………………………..4
2. Обобщенная архитектура ПЭВМ …………………………………………..7
2.1. Процессор ……………………………………………………………….....7
2.2. Программа………………………………………………………………….8
3. Устройства памяти ЭВМ …………………………………………………..8
3.1. Память компьютера ……………………………………………………….8
3.2. Внутренняя память ………………………………………………………..9
3.3. Внешняя память …………………………………………………………...9
3.4. Энергозависимая ………………………………………………………….9
3.5. Энергонезависимая ……………………………………………………….9
3.6. Регистровая память ……………………………………………………...10
3.7. Кеш-память ………………………………………………………………10
3.8. Оперативное запоминающее устройство ………………………………11
3.9. Внешнее запоминающее устройство …………………………………...11
4. Устройства ввода-вывода ………………………………………………... 12
4.1. Клавиатура ……………………………………………………………….13
4.2. Мышь ……………………………………………………………………..13
4.3. Трекбол …………………………………………………………………...14
4.4. Джойстик …………………………………………………………………14
4.5. Дигитайзер ……………………………………………………………….14
4.6. Сканер …………………………………………………………………….14
5. Общий принцип работы ЭВМ …………………………………………….16
Заключение………………….. ……………………………………………….18
Список используемой литературы…………………………………………..20

Прикрепленные файлы: 1 файл

Принципы построения вычислительных машин.doc

— 147.00 Кб (Скачать документ)

Различают сканеры ручные, протягивающие и планшетные. В ручных сканерах пользователь сам ведет сканер по поверхности изображения или текста. Протягивающие сканеры предназначены для сканирования изображений на листах только определенного формата. Протягивающее устройство таких сканеров последовательно перемещает все участки сканируемого листа над неподвижной светочувствительной матрицей. Наибольшее распространение получили планшетные сканеры, которые позволяют сканировать листы бусмги, книги и другие объекты, содержащие изображения. Такие сканеры состоят из пластикового корпуса, закрываемого крышкой. Верхняя поверхность корпуса выполняется из оптически прозрачного материала, на который кладется сканируемое изображение. После этого изображение закрывается крышкой и производится сканирование. В процессе сканирования под стеклом перемещается лампа со светочувствительной матрицей.

Главные характеристики сканеров - это скорость считывания, которая выражается количеством  сканируемых станиц в минуту (pages per minute - ppm), и разрешающая способность, выражаемая числом точек получаемого изображения на дюйм оригинала (dots per inch - dpi).

После ввода  пользователем исходных данных компьютер  должен их обработать в соответствии с заданной программой и вывести  результаты в форме, удобной для  восприятия пользователем или для использования другими автоматическими устройствам посредством устройств вывода.

Выводимая информация может отображаться в графическом  виде, для этого используются мониторы, принтеры или плоттеры. Информация может также воспроизводиться в виде звуков с помощью акустических колонок или головных телефонов, регистрироваться в виде тактильных ощущений в технологии виртуальной реальности, распространяться в виде управляющих сигналов устройства автоматики, передаваться в виде электрических сигналов по сети.

 

К устройствам  вывода информации относятся: дисплей (монитор), принтер, плоттер, акустические колонки и др.

Модем выполняет  функции и устройств ввода, и  устройств вывода информации. Он позволяет  соединяться с другими удаленными компьютерами с помощью телефонных линий связи и обмениваться информацией между ЭВМ. Модем на передаче превращает цифровые сигналы в звуки, а на приеме – наоборот.

Одной из плодотворных идей, положенных в основу персональных компьютеров, является открытость архитектуры. Согласно этой концепции, каждый пользователь может самостоятельно формировать конфигурацию своего компьютера по своему усмотрению. Это означает, что в зависимости от потребности пользователь может подключить к системной шине различные устройства: модем, звуковую плату, клавиатуру электромузыкального инструмента, плату телевизионного приемника и т. п. Открытость архитектуры позволяет легко модернизировать имеющийся компьютер, например, путем замены винчестера на жесткий диск большего объема, замены процессора, увеличения объема оперативной памяти и т. д.

 

  1. Общий принцип работы ЭВМ заключается в следующем. Из процессора на шину адреса (на структурной схеме она не показана и находится внутри системной шины) выдается адрес очередной команды. Считанная по этому адресу команда (например, из ПЗУ) поступает по шине данных (внутри системной шины) в процессор, где она выполняется с помощью АЛУ. Устройство управления процессора определяет адрес следующей выполняемой команды (фактически номер очередной ячейки памяти, где находится очередная команда). После исполнения процессором текущей команды на шину адреса выводится адрес ячейки памяти, где хранится следующая команда и т. д.

Сигналы, передаваемые по управляющей шине, синхронизируют работу процессора, памяти, устройств ввода и вывода информации.

Порядок выбора адресов из памяти (и очередности  выполнения команд) определяет программа, которая может располагаться  в ПЗУ, но чаще выполняемая в данный момент времени программа находится  в ОЗУ. В линейных программах команды  последовательно выбираются из очередных ячеек памяти. В разветвляющихся программах естественный порядок выбора адресов ячеек памяти может нарушаться. В результате может происходить переход (резкий скачок) к ячейке памяти, расположенной в любом месте ОЗУ. При одном наборе исходных данных переход будет происходить, а при другом наборе данных перехода не будет. По этой причине такие команды называют командами условной передачи управления.

Нередко при работе ЭВМ программа вводится с клавиатуры в ОЗУ. Затем процессор под управлением этой программы выполняет необходимые действия. Чаще управляющую программу загружают в ОЗУ с внешнего запоминающего устройства или по вычислительной сети. При выполнении загруженной программы ЭВМ запрашивает у пользователя необходимые данные и процессор после выполнения указанных в программе команд отправляет результат по системной шине на одно из устройств вывода информации.

Выполнение  основной программы иногда может  приостанавливаться с целью выполнения какого-то другого срочного задания, например, для передачи данных на принтер. Такой режим работы, когда временно приостанавливается выполнение основной программы и происходит обслуживание запроса, называется прерыванием. По завершении обслуживания прерывания процессор возвращается к выполнению временно отложенной основной программы.

Запросы на прерывание могут возникать из-за сбоев в  аппаратуре, переполнения разрядной  сетки, деления на ноль, требования внешним устройством выполнения операции ввода информации и т. д. Например, при нажатии клавиши на клавиатуре возникает прерывание, обработка которого сводится к записи кода нажатой клавиши в буфер клавиатуры. Обслуживание прерываний осуществляется с помощью специальных программ обработки прерываний.

Очевидно, что  конструкция современной ЭВМ много сложнее рассмотренной здесь конструкции. На структурной схеме не изображены тактовый генератор, который подключен к процессору, адаптеры (или контроллеры), включенные между системной шиной и каждым устройством ввода-вывода, и другие блоки. Однако выбранный уровень детализации позволяет легче понять общий принцип работы ЭВМ.

Приведенный вид  структурной схемы ЭВМ является фон-неймановской структурой, названной  так в честь американского  ученого венгерского происхождения  фон Неймана.

Существуют  и другие структуры, в частности многопроцессорные, позволяющие вести параллельную обработку данных с помощью нескольких процессоров. Так самый быстрый в мире компьютер ASCI Red содержит более девяти тысяч процессора Pentium Pro.

Основные блоки  ПЭВМ показаны на рисунке.

В системном  блоке находится материнская  плата (на ней располагаются процессор, ОЗУ, ПЗУ и др.), накопители на гибких, жестких и оптических дисках, внутренние модемы, сетевые, звуковые карты и  др.

 

 Заключение

Как видно, полувековая история развития ЭВТ дала не очень широкий спектр основных структур ЭВМ. Все приведенные структуры не выходят за пределы классической структуры фон Неймана. Их объединяют следующие Традиционные признаки:

• ядро ЭВМ образует процессор - единственный вычислитель в структуре, дополненный каналами обмена информацией и памятью;

• линейная организация ячеек всех видов  памяти фиксированного размера;

• одноуровневая  адресация ячеек памяти, стирающая  различия между всеми типами информации;

• внутренний машинный язык низкого уровня, при котором команды содержат элементарные операции преобразования простых операндов;

• последовательное централизованное управление вычислениями;

• достаточно примитивные возможности устройств  ввода-вывода. Несмотря на все достигнутые  успехи, классическая структура ЭВМ не обеспечивает возможностей дальнейшего увеличения производительности. Наметился кризис, обусловленный рядом существенных недостатков:

• плохо  развитые средства обработки нечисловых данных (структуры, символы, предложения, графические образы, звук, очень большие массивы данных и др.);

• несоответствие машинных операций операторам языков высокого уровня;

• примитивная  организация памяти ЭВМ;

• низкая эффективность ЭВМ при решении  задач, допускающих параллельную обработку  и т.п.

Все эти  недостатки приводят к чрезмерному усложнению комплекса программных средств, используемого для подготовки и решения задач пользователей.

В ЭВМ  будущих поколений, с использованием в них “встроенного искусственного интеллекта”, предполагается дальнейшее усложнение структуры. В-первую очередь это касается совершенствования процессов общения пользователей с ЭВМ (использование аудио-, видеоинформации, систем мультимедиа и др.), обеспечения доступа к базам данных и базам знаний, организации параллельных вычислений. Несомненно, что этому должны соответствовать новые параллельные структуры с новыми принципами их построения. В качестве примера укажем, что самая быстрая ЭВМ фирмы IBM в настоящее время обеспечивает быстродействие 600 MIPS (миллионов команд в секунду), самая же большая гиперкубическая система nCube дает быстродействие 123.103 MBPS. Расчеты показывают, что стоимость одной машинной операции в гиперсистеме примерно в тысячу раз меньше. Вероятно, подобными системами будут обслуживаться большие информационные хранилища.

 

Список  используемой литературы

Каймин В. А. Информатика: Учебник. – М: ИНФРА-М, 2000 – 2232 с. (серия  «Высшее образование).

Острейковский В. А. Информатика: Учебное пособие для ВУЗов /В. А. Острейковский – 3-е изд., стер. – М.: Высшая школа, 2005 – 511 с.: ил.

А.П.Пятибратов, А.С.Касаткин, Р.В.Можаров. “ЭВМ, МИНИ-ЭВМ и микропроцессорная  техника в учебном процессе”.

Гаевский А.Ю. «Информатика»

 


Информация о работе Принципы построения вычислительных машин